1. Мультиплексор



страница4/18
Дата17.10.2016
Размер1.09 Mb.
1   2   3   4   5   6   7   8   9   ...   18

№_____6______


1. Счетчик-определение. Классификация.

Счетчиком называется схема, выполняющая функции подсчета количества единичных сигналов, поступивших на ее вход, а также функции формирования и запоминания некоторого кода, соответствующего этому количеству. Счетчики также иногда могут выполнять функции приема и выдачи кода. Схемы счетчиков можно классифицировать по следующим признакам:

1)Основание системы счисления. В вычислительных системах используются двоичные и десятичные счетчики. Двоичные счетчики в свою очередь подразделяются на счетчики с модулем пересчета равным 2n. и модулем пересчета, не равным 2n, где n - разрядность счетчика.

2)Направление переходов счетчика. Счетчики принято разделять на простые (суммирующие или вычитающие), которые могут вести счет только в одном направлении, то есть только прибавлять или вычитать входные сигналы, и реверсивные, которые в зависимости от управляющих сигналов могут вести счет в прямом или обратном направлениях.

3)Способ построения цепей переноса. Различают счетчики с последовательным, сквозным, параллельным и групповым переносом.

4)Способ организации счета. Счетчики могут быть асинхронными и синхронными. В асинхронных счетчиках изменение состояния счетчика осуществляется с поступлением информации только на вход первого каскада. В синхронных счетчиках информационный сигнал поступает одновременно на синхронные входы всех разрядов.

5)Тип элементов, используемых для построения счетчика. Различают счетчики на импульсных, импульсно-потенциальных и потенциальных элементах. Хотя в современной электронной аппаратуре используется все эти три типа.

6)Тип организации счетного элемента. Счетчики могут быть построены на триггерах со счетным входом и на запоминающих элементах с использованием логических суммирующих схем.

Особую группу составляют счетчики, работающие по принципу циклического сдвигающего регистра (кольцевые счетчики). Однако эти счетчики отличаются низкой устойчивостью к помехам и сбоем и в ЭВМ практически не применяются.

2. Применение ОУ. Суммирующий усилитель. Резисторы, используемые в данных схемах, имеют типичное сопротивление порядка кОм. Использование резисторов с сопротивление менее 1 кОм нежелательно, так как они могут вызвать чрезмерный ток, перегружающий выход ОУ. Резисторы более 1 МОм могут внести повышенный тепловой шум и сделать схему чувствительной к случайным ошибкам вследствие токов смещения.

Суммирующий усилительописание: http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/opampsumming.svg/220px-opampsumming.svg.png

Суммирует (с весом) несколько напряжений. Сумма на выходе инвертирована, то есть все веса отрицательны.



описание: v_\mathrm{out} = - r_\mathrm{f} \left( { v_1 \over r_1 } + { v_2 \over r_2 } + \cdots + {v_n \over r_n} \right)

Если описание: r_1 = r_2 = \cdots = r_n, то



описание: v_\mathrm{out} = - \left( {r_\mathrm{f} \over r_1} \right) (v_1 + v_2 + \cdots + v_n ) \!\

Если описание: r_1 = r_2 = \cdots = r_n = r_\mathrm{f}, то



описание: v_\mathrm{out} = - ( v_1 + v_2 + \cdots + v_n ) \!\

Выход инвертирован

Входной импеданс n-го входа равен Zn = Rn (Поскольку V является виртуальной землей)

3. Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).

Способ №1:

N=10/2=5/2=2,5/2=1,25/2=0,625/2=0,3125/2=0,15625/2=0,078125/2=0,0390625/2=0,01953125/2=0,009765625/2=0,005В, итак N=11.



Способ №2:

10/2N=0,005 решим уравнение и найдём N.

10/0,005=2N //прологорифмируем Л. и П. части

ln(2000)=N*ln2

N=11.


№_____7______


1. Асинхронные счётчики.04349_show.png

Асинхронные схемы счётчиков обладают общей проблемой, связанной с последовательной «сквозной» сменой состояний триггеров. Этот эффект свойственен некоторым двоичным сумматорам и схемам преобразования данных, и обусловлен накапливающимися задержками при прохождении сигнала от одного элемента логического вентиля к другому. Когда выход Q триггера переключается с 1 на 0, он отдаёт команду на переключение следующему триггеру. Если следующий триггер переходит с 1 на 0, то он также подаёт команду на переключение следующему триггеру и т. д. Однако, поскольку всегда существует небольшая задержка при прохождении сигнала между командой на переключение (синхроимпульс) и действительным переключением (смена состояний выходов Q и Q'), а, следовательно, каждый последующий триггер, который должен поменять состояние, сменит его спустя некоторое время, после того как предыдущий триггер уже поменял своё состояние. Следовательно, при переключении состояний нескольких триггеров, смена состояния происходит не одновременно (рисунок):14057_show.png

Чем больше триггеров переключается по данному синхроимпульсу, тем большим становится накопленное время задержки от младшего до старшего разряда. По синхроимпульсу в подобной точке смены состояний (например, при переходе с 0111 на 1000), будет происходить «сквозное“ изменение состояний от младшего к старшему разряду, по мере того как происходит смена каждого бита, и подаётся команда для перемены состояния следующего, с небольшой задержкой между двумя соседними триггерами. Если мы внимательнее посмотрим на этот эффект при переходе с 0111 на 1000, то увидим, что в течение короткого периода счётчик будет выдавать неверные значения:

Вместо перехода с "0111“ на "1000”, схема будет очень быстро менять состояния в следующей последовательности: 0111-0110-0100-0000 и лишь затем 1000 (в десятичной системе: 7-6-4-0 и затем 8). Из-за такой последовательной (“насквозь") смены состояний триггеров, подобная схема называется счётчиком со сквозным переносом или асинхронным счётчиком.14058.png

Во многих случаях этот эффект приемлем, поскольку период неверных выходных значений происходит чрезвычайно быстро (для лучшего понимания этого эффекта степень задержки на рисунках преувеличена). Если бы нам потребовалось подать сигнал, например, на ряд светодиодов, то этот промежуток неверных выходных сигналов не внёс бы в работу схемы каких-бы то ни было искажений. Однако это неприемлемо, если бы нам потребовалось использовать счётчик для «выбора» входов мультиплексора или выполнения какой-либо иной задачи, когда ложные выходные сигналы приведут к ошибкам в работе схемы.

2. Применение ОУ. Интегратор.описание: http://upload.wikimedia.org/wikipedia/commons/thumb/0/02/opampintegrating.svg/220px-opampintegrating.svg.png

Резисторы, используемые в данных схемах, имеют типичное сопротивление порядка кОм. Использование резисторов с сопротивление менее 1 кОм нежелательно, так как они могут вызвать чрезмерный ток, перегружающий выход ОУ. Резисторы более 1 МОм могут внести повышенный тепловой шум и сделать схему чувствительной к случайным ошибкам вследствие токов смещения.

Интегратор интегрирует (инвертированный) входной сигнал по времени.

где Vin и Vout — функции времени, Vinitial — выходное напряжение интегратора в момент времени t = 0.описание: v_\mathrm{out} = \int_0^t - {v_\mathrm{in} \over rc} \, dt + v_\mathrm{initial}

Данный четырехполюсник можно также рассматривать как фильтр нижних частот.
3. Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).

Способ №1:

N=10/2=5/2=2,5/2=1,25/2=0,625/2=0,3125/2=0,15625/2=0,078125/2=0,0390625/2=0,01953125/2=0,010, итак N=10.



Способ №2:

10/2N=0,010 решим уравнение и найдём N.

10/0,010=2N //прологорифмируем Л. и П. части

ln(1000)=N*ln2

N=10.


Каталог: wordpress -> wp-content -> uploads
uploads -> Пособие по организации и роли систем торгово-промышленных палат Маркус Пилгрим и Ральф Мейер Бонн, Германия
uploads -> Методические рекомендации по проведению урока знаний в общеобразовательных организациях по теме «Моя Родина Алтай»
uploads -> Отчет о выполнении проекта реализации технологической платформы
uploads -> Русская Палестина от Патриарха Никона до наших дней
uploads -> Перечень медицинских противопоказаний для поступления
uploads -> Методические рекомендации по реализации дополнительных профессиональных программ повышения квалификации в сфере закупок


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   18


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал