Аберрации электронных линз аберрация света абсолютная температура



страница1/9
Дата18.10.2016
Размер1,76 Mb.
  1   2   3   4   5   6   7   8   9
А

АБЕРРАЦИИ ОПТИЧЕСКИХ СИ­СТЕМ

АБЕРРАЦИИ ЭЛЕКТРОННЫХ ЛИНЗ

АБЕРРАЦИЯ СВЕТА

АБСОЛЮТНАЯ ТЕМПЕРАТУРА

АБСОЛЮТНО НЕЙТРАЛЬНАЯ ЧА­СТИЦА

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО

АБСОЛЮТНЫЕ ПРАКТИЧЕСКИЕ ЭЛЕКТРИЧЕСКИЕ ЕДИНИЦЫ

АБСОЛЮТНЫЕ СИСТЕМЫ ЕДИНИЦ

АБСОЛЮТНЫЙ НУЛЬ ТЕМПЕРА­ТУРЫ

АБСОРБЦИОННАЯ СПЕКТРОСКО­ПИЯ

АБСОРБЦИЯ

АБСОРБЦИЯ СВЕТА

АВОГАДРО ЗАКОН

АВОГАДРО ПОСТОЯННАЯ

АВТОИОНИЗАЦИЯ

АВТОИОННЫЙ МИКРОСКОП

АВТОКОЛЕБАНИЯ

АВТОКОЛЛИМАТОР

АВТОКОЛЛИМАЦИЯ

АВТОМОДЕЛЬНОЕ ТЕЧЕНИЕ

АВТОРАДИОГРАФИЯ

АВТОФАЗИРОВКА

АВТОЭЛЕКТРОННАЯ ЭМИССИЯ

АВТОЭЛЕКТРОННЫЙ МИКРОСКОП

АГРЕГАТНЫЕ СОСТОЯНИЯ

АДАПТАЦИЯ

АДГЕЗИЯ

АДИАБАТА

АДИАБАТИЧЕСКИЙ ПРОЦЕСС

АДИАБАТИЧЕСКОЕ РАЗМАГНИ­ЧИВАНИЕ

АДИАБАТНАЯ ОБОЛОЧКА

АДРОННЫЕ СТРУИ

АДРОННЫЙ АТОМ

АДРОНЫ

АДСОРБЦИЯ

АККОМОДАЦИЯ ГЛАЗА

АККРЕЦИЯ

АКСИАЛЬНОГО ТОКА ЧАСТИЧНОЕ СОХРАНЕНИЕ

АКСИОМАТИЧЕСКАЯ ТЕОРИЯ ПО­ЛЯ

АКТИВАЦИОННЫИ АНАЛИЗ

АКТИВНАЯ СРЕДА

АКТИВНОСТЬ

АКУСТИКА

АКУСТИКА ДВИЖУЩИХСЯ СРЕД

АКУСТИЧЕСКИЕ ТЕЧЕНИЯ

АКУСТИЧЕСКИЙ ВЕТЕР

АКУСТИЧЕСКИЙ ПАРАМАГНИТ­НЫЙ РЕЗОНАНС

АКУСТИЧЕСКИЙ ЯДЕРНЫЙ МАГ­НИТНЫЙ РЕЗОНАНС

АКУСТИЧЕСКОЕ СОПРОТИВЛЕНИЕ

АКУСТООПТИКА

АКУСТООПТИЧЕСКАЯ ДИФРАК­ЦИЯ

АКУСТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

АКУСТОЭЛЕКТРОНИКА

АКУСТОЭЛЕКТРОННОЕ ВЗАИМО­ДЕЙСТВИЕ

АКЦЕПТОР

АЛГЕБРА ТОКОВ

АЛМАЗ

АЛЬБЕДО

АЛЬФА-РАСПАД

альфа-спектрометр

АЛЬФА-ЧАСТИЦА

АЛЬФВЕНОВСКИЕ ВОЛНЫ

АМБИПОЛЯРНАЯ ДИФФУЗИЯ

АМОРФНОЕ СОСТОЯНИЕ

АМОРФНЫЕ ПОЛУПРОВОДНИКИ

АМПЕР

АМПЕР НА ВЕБЕР

АМПЕР НА КИЛОГРАММ

АМПЕР НА МЕТР

АМПЕРА ЗАКОН

АМПЕРА ТЕОРЕМА

АМПЕР-ВИТОК

АМПЕР-КВАДРАТНЫЙ МЕТР

АМПЕРМЕТР

АМПЕР-ЧАС

АМПЛИТУДА ВЕРОЯТНОСТИ

АМПЛИТУДА КОЛЕБАНИЙ

АМПЛИТУДА ПРОЦЕССА

АМПЛИТУДА РАССЕЯНИЯ

АМПЛИТУДНАЯ МОДУЛЯЦИЯ

АНАГЛИФОВ ЦВЕТНЫХ МЕТОД

АНАЛИЗАТОР

АНАМОРФИРОВАНИЕ

АНАМОРФОТНАЯ НАСАДКА

АНАСТИГМАТ

АНАХРОМАТ

АНГСТРЕМ

АНИЗОМЕТР МАГНИТНЫЙ

АНИЗОТРОПИЯ

АНИЗОТРОПИЯ ОПТИЧЕСКАЯ

АННИГИЛЯЦИЯ ПАРЫ

АНОД

АНОДНОЕ ПАДЕНИЕ

АНОМАЛЬНАЯ ДИСПЕРСИЯ

АНСАМБЛЬ СТАТИСТИЧЕСКИЙ

АНТЕННА

АНТЕННАЯ РЕШЕТКА

АНТИБАРИОНЫ

АНТИВЕЩЕСТВО

АНТИЗАПИРАЮЩИЙ КОНТАКТ

АНТИКВАРК

АНТИНЕЙТРИНО

АНТИНЕЙТРОН

АНТИПОДЫ ОПТИЧЕСКИЕ

АНТИПРОТОН

АНТИСЕГНЕТОЭЛЕКТРИК

АНТИФЕРРОМАГНЕТИЗМ

АНТИФЕРРОМАГНЕТИК

АНТИФЕРРОМАГНИТНАЯ ТОЧКА КЮРИ

АНТИФЕРРОМАГНИТНЫЙ РЕЗО­НАНС

АНТИЧАСТИЦЫ

АПЕРТУРА

АПЕРТУРНАЯ ДИАФРАГМА

АПЛАНАТ

АПОДИЗАЦИЯ

АПОСТИЛЬБ

АПОХРОМАТ

АППАРАТНАЯ ФУНКЦИЯ

АРЕОМЕТР

«АРОМАТ»

АРСЕНИД ГАЛЛИЯ

АРХИМЕДА ЗАКОН

АРХИМЕДА ЧИСЛО

АРХИТЕКТУРНАЯ АКУСТИКА

АСИМПТОТИЧЕСКАЯ СВОБОДА

АСТЕРИЗМ

АСТИГМАТИЗМ

АСТИГМАТИЗМ глаза

АСТРОНОМИЧЕСКАЯ ЕДИНИЦА

АСТРОФИЗИКА

АСФЕРИЧЕСКАЯ ОПТИКА

АТМОСФЕРА

АТМОСФЕРА Земли

АТМОСФЕРИКИ

АТМОСФЕРНАЯ АКУСТИКА

АТМОСФЕРНЫЙ ВОЛНОВОД

АТОМ

АТОМНАЯ ЕДИНИЦА МАССЫ

АТОМНАЯ МАССА

АТОМНАЯ ФИЗИКА

АТОМНАЯ ЭНЕРГИЯ

АТОМНЫЕ РАДИУСЫ

АТОМНЫЕ СПЕКТРЫ

АТОМНЫЕ СТОЛКНОВЕНИЯ

АТОМНЫЙ ВЕС

АТОМНЫЙ НОМЕР

АТОМНЫЙ ФАКТОР

АТТО...

АХРОМАТ

АЭРОДИНАМИКА

АЭРОДИНАМИКА РАЗРЕЖЕННЫХ ГАЗОВ

АЭРОДИНАМИЧЕСКАЯ СИЛА

АЭРОДИНАМИЧЕСКАЯ ТРУБА

АЭРОДИНАМИЧЕСКИЕ ИЗМЕРЕ­НИЯ

АЭРОДИНАМИЧЕСКИЕ КОЭФФИ­ЦИЕНТЫ

АЭРОДИНАМИЧЕСКИЕ СИЛА И МО­МЕНТ

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ

АЭРОДИНАМИЧЕСКОЕ СОПРОТИВ­ЛЕНИЕ

АЭРОСТАТИКА
АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ (от лат. aberratio — уклонение), искажения, погрешности изображе­ний, формируемых оптич. системами. А. о. С, проявляются в том, что оптич. изображения не вполне отчётливы, не точно соответствуют объектам или оказываются окрашенными. Наиболее распространены след, виды А. о. с.: сферическая аберрация — недостаток изображения, при к-ром испущенные одной точкой объекта световые лучи, прошедшие вблизи оптической оси системы, и лучи, прошедшие через отдалённые от оси части системы, не собираются в одну точку; кома — аберрация, возникающая при косом прохождении световых лучей через оптич. систему. Если при прохожде­нии оптич. системы сферич. световая волна деформируется так, что пучки лучей, исходящих из одной точки объекта, не пересекаются в одной точке, а располагаются в двух вза­имно перпендикулярных отрезках на нек-ром расстоянии друг от друга, то такие пучки наз. астигматическими, а сама эта аберрация — астигматиз­мом. Аберрация, наз. дисторсией, приводит к нарушению геом. подобия между объектом и его изображением. К А. о. с. относится также кривизна поля изображения.

Оптич. системы могут обладать од­новременно неск. видами аберраций. Их устранение производят в соответ­ствии с назначением системы; часто оно представляет собой трудную зада­чу. Перечисленные выше А. о. с. наз. геометрическими. Сущест­вует ещё хроматическая аберрация, связанная с зависимостью показателя преломления оптич. сред от длины волны света. Вследствие волн, приро­ды света, несовершенства изображе­ний в оптич. системах возникают так­же в результате дифракции света на диафрагмах, оправах линз и т. п. Они принципиально неустранимы (хотя и могут быть уменьшены), но обычно влияют на кач-во изображения мень­ше, чем геом. и хроматич. А. о. с.

• Борн М., Вольф Э., Основы опти­ки, пер. с англ., 2 изд., М., 1973; Герцбергер М., Современная геометрическая оп­тика, пер. с англ., М., 1962; Слюсарев Г. Г., Методы расчета оптических си­стем, 2 изд., Л., 1969.

АБЕРРАЦИИ ЭЛЕКТРОННЫХ ЛИНЗ, искажения электронно-оптич. изображений, возникающие вслед­ствие разброса ч-ц по энергиям в пуч­ке, наличия тепловых скоростей, ди­фракции ч-ц, а также из-за эффектов пространств. заряда. Классификацию А. э. л. см. в ст. Электронная и ионная оптика. Аберрациями обладают и электронные зеркала.

АБЕРРАЦИЯ СВЕТА в астрономии, изменение видимого положения све­тила на небесной сфере, обусловленное

конечностью скорости света и движе­нием наблюдателя вследствие враще­ния Земли (суточная А. с.), обраще­ния Земли вокруг Солнца (годичная А. с.) и перемещения Солн. системы в пр-ве (вековая А. с.).

АБСОЛЮТНАЯ ТЕМПЕРАТУРА (тер­модинамическая температура), пара­метр состояния, характеризующий макроскопич. систему в состоянии термодинамич. равновесия (при этом А. т. всех её макроскопич. подсистем одинакова). А. т. введена в 1848 англ. физиком У. Томсоном (Кельвином) на основании второго начала термодина­мики. А. т. обозначается символом Т, выражается в Кельвинах (К) и отсчи­тывается от абсолютного нуля тем­пературы. А. т. измеряют по термодинамической и международной прак­тическим температурным шкалам.

АБСОЛЮТНО НЕЙТРАЛЬНАЯ ЧА­СТИЦА, то же, что истинно нейтраль­ная частица.

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО, тер­мин, к-рым в теории теплового излу­чения наз. тело, полностью погло­щающее весь падающий на него по­ток излучения.

Коэфф. поглощения А. ч. т. равен еди­нице и не зависит от длины волны из­лучения. Наиболее близким приближе­нием к А. ч. т. явл. непрозрачный сосуд с небольшим отвер­стием, стенки к-рого имеют оди­наковую темп-ру (рис.). Луч, по­павший в такой сосуд, испытывает многократные отражения, частично по­глощаясь при каждом из них. Через нек-рое время стенки сосуда поглоща­ют его полностью. Близким к единице коэфф. поглощения обладают сажа и платиновая чернь.

Интенсивность излучения А. ч. т. выше, чем всех остальных («нечёрных») тел при той же темп-ре (см. Кирхгофа закон излучения). Осн. особенность излучения А. ч. т.: его св-ва не зависят от природы в-ва и определяются лишь темп-рой стенок, т. е. излучение А.ч. т. находится в термодинамич. равновесии с в-вом и распределение плотности этого излучения по длинам волн даётся Планка законом излучения, а полная плотность излучения по всем длинам волн определяется Стефана — Волъцмана законом излучения.

Закономерности, определяющие из­лучение А. ч. т., используют в оптич. пирометрии для измерения высоких темп-р; А. ч. т. используют также в кач-ве световых эталонов.

АБСОЛЮТНЫЕ ПРАКТИЧЕСКИЕ ЭЛЕКТРИЧЕСКИЕ ЕДИНИЦЫ, ом, вольт, ампер и др., установленные для практич. электрич. измерений 1-м Междунар. конгрессом электриков (1881). Они заменили электрич. ед. СГС системы единиц, поскольку нек-рые из ед. были слишком малы или велики и поэтому неудобны для прак­тич. применения. Ед. электрич. со­противления (ом) и разности потен­циалов (вольт) были установлены как кратные соответствующим ед. СГС (1 Ом=109 ед. СГС, 1 В = 108 ед. СГС). Остальные ед.— ампер, кулон, джо­уль и др. выводились как производ­ные от ома и вольта. В дальнейшем А. п. э. е. были включены в МКСА систему единиц, причём за основ­ную ед. в ней был принят ампер. С установлением Международной си­стемы единиц (СИ), охватывающей все области физ. и техн. измерений, А. п. э. е. вошли в СИ вместе с си­стемой МКСА.

АБСОЛЮТНЫЕ СИСТЕМЫ ЕДИНИЦ, содержат огранич. число основных ед. физ. величин, а остальные ед. си­стемы определяются как производные от основных. При определении про­изводной ед. к.-л. физ. величины в А. с. е. исходят из ф-лы, выражаю­щей зависимость между этой величи­ной и др. величинами, ед. к-рых явл. основными или выражены через ос­новные. В 30-х гг. 19 в. нем. матема­тиком К. Ф. Гауссом была введена А. с. е. с основными ед. миллиметр (ед. длины), миллиграмм (ед. массы) и секунда (ед. времени). Поэтому часто назв. «А. с. е.» применяют к системам, построенным на трёх основных ед.— длины, массы и времени, а иногда и в ещё более узком смысле — по отно­шению к СГС системам единиц, т. е. к системам, в к-рых за основные ед. приняты сантиметр, грамм и секунда. Термин «А. с. е.» следует считать ус­таревшим, поскольку системы ед. мо­гут быть построены и на иной основе.

• См. при ст. Система единиц.

АБСОЛЮТНЫЙ НУЛЬ ТЕМПЕРА­ТУРЫ, начало отсчёта термодинамич. темп-ры; расположен на 273,16 К ниже темп-ры тройной точки (0,01°С) воды (на 273, 15°С ниже нуля темп-ры по шкале Цельсия, см. Температурные шкалы). Существование термодинами­ческой температурной шкалы и А. н. т. следует из второго начала термодинамики. С приближением темп-ры к А. в. т. стремятся к нулю тепловые хар-ки в-ва: энтропия, теп­лоёмкость, коэфф. теплового расши­рения и др. По представлениям классич. физики, при А. и. т. энергия теплового (хаотич.) движения моле­кул и атомов в-ва равна нулю. Со­гласно же квант. механике, при А.н .т. атомы и молекулы, расположенные в

7

узлах крист. решётки, не находятся в полном покое, они совершают «ну­левые» колебания и обладают т. н. нулевой энергией. Если масса атомов и энергия вз-ствия между ними очень малы, нулевые колебания могут вос­препятствовать образованию крист. решётки. Это имеет место у 3Не и 4Не, к-рые остаются жидкими при атм. давлении вплоть до самых низких достигнутых темп-р.



Получение темп-р, предельно при­ближающихся к А. н. т., представ­ляет сложную эксперим. проблему (см. Низкие температуры), но уже получены темп-ры, лишь на миллион­ные доли градуса отстоящие от А. н. т.

• См. при ст. Температурные шкалы и Низ­кие температуры.

АБСОРБЦИОННАЯ СПЕКТРОСКО­ПИЯ, методы изучения эиергетич. состояний квант. систем путём иссле­дования их спектров поглощения. В А. с. излучение непрерывного спект­ра пропускают через слой исследуе­мого в-ва, в к-ром поглощается излу­чение характерных для данного в-ва длин волн. Детектор спектр. прибора фиксирует изменение интенсивности света в зависимости от длины волны, т. е. спектр поглощения в-ва. Полу­чение спектров поглощения возможно во всех диапазонах длин волн, но особенно широко они применяются в радио-, ИК- и субмиллиметровом диа­пазонах. А. с,— основа абсорбцион­ного спектрального анализа. См, также Спектроскопия.

АБСОРБЦИЯ (от лат. absorbeo — поглощаю), поглощение (извлечение) в-в из газовой смеси всем объёмом жидкости (абсорбента). А.— один из процессов растворения определ. газа в жидком растворителе; величина А. определяется растворимостью этого газа, а скорость — разностью его кон­центраций в газовой смеси и в жид­кости. Если концентрация газа в жид­кости выше, чем в газовой смеси, он выделяется из р-ра (десорбция). А. применяется для разделения газов, на ней основаны мн. важнейшие про­мышленные процессы (производство нек-рых кислот, соды и т. д.). Извлече­ние в-ва из р-ра всем объёмом жид­кого абсорбента (экстракция) и из газовой смеси расплавами (окклю­зия) — процессы, аналогичные А. Ча­сто А. сопровождается образованием хим. соединений (хемосорбция) и по­верхностным поглощением в-ва (адсорбция).

АБСОРБЦИЯ СВЕТА, то же, что поглощение света.

АВОГАДРО ЗАКОН, один из осн. законов идеального газа, согласно к-рому в равных объёмах V разл. газов при одинаковых давлении p и темп-ре Т содержится одинаковое число мо­лекул. Открыт в 1811 итал. учёным А. Авогадро (A. Avogadro). Согласно А. з., 1 кмоль любого идеального газа при норм. условиях (р=101325 Па=760 мм рт. ст. и T=0°С) занимает объём 22,4136 м3; число молекул в одном моле наз. Авогадро постоянной.

Согласно _кинетич. теории газов, pV=l/3 Nmv2 (N — число, т — масса, v2 — ср. квадратичная скорость молекул), a 1/2mv2=3/2 kT. Отсюда видно, что для двух газов при условии T1=T2, p1=p2 и v1=v2 должно быть и N1=N2,.

АВОГАДРО ПОСТОЯННАЯ (число Авогадро), число структурных элемен­тов (атомов, молекул, ионов или др. ч ц) в ед. кол-ва в-ва (в одном моле). Названа в честь А. Авогадро, обозна­чается NA. А. п.— одна из фундамен­тальных физических констант, су­щественная для определения мн. дру­гих физ. констант (Больцмана по­стоянной, Фарадея постоянной и др.). Один из лучших эксперим. методов определения А. ц. основан на изме­рениях электрич. заряда, необходи­мого для электролитич. разложения известного числа молей сложного в-ва, и заряда эл-на. Наиболее достовер­ное значение А. п. (на 1980) NA= 6,022045(31) •1023 моль-1.

АВТОИОНИЗАЦИЯ (полевая иони­зация), процесс ионизации атомов и молекул газа в сильных злектрич. полях. Связанный эл-н в атоме можно представить находящимся в потен­циальной яме (рис. 1,а). При включе­нии электрич. поля напряжённостью E к начальной потенц. энергии эл-на V0(x), находящегося в точке г, до­бавляется потенц. энергия еЕх', где е — заряд эл-на. Вследствие этого потенц. яма становится асимметрич­ной — с одной её стороны образуется потенциальный барьер конечной ши­рины x1x2 (рис. 1, б), сквозь к-рый эл-н может «просочиться», т. е. будет иметь место туннельный эффект и будет возможна ионизация с ниж. уровня атома.

Вероятность W(V,ξ) туннелирования эл-на сквозь потенц. барьер опре­деляется ф-лой:



где V(x)=V0(x)+eEx и ξ — соотв. потенциальная и полная энергия эл-на, т — его масса. Вероятность W(V, ξ) туннелирования резко увеличивается при уменьшении площади барьера над прямой x1x2. Это происходит при увеличении напряжённости поля E или при повышении энергии ξ эл-на в атоме к.-л. др. способами (напр., при туннелировании эл-нов с воз­буждённых уровней). Так, вероят­ность А. атома водорода из осн. со­стояния достигает заметной величины лишь при .Е~108 В/см, а из возбуж­дённых состояний — уже при Е~106 В/см. Экспериментально впер­вые обнаружена именно А. возбуж­дённых атомов: в спектре испускания атомов водорода, находящихся во

внеш. электрич. поле напряжённо­стью ~106 В/см, было обнаружено падение интенсивности линий, свя­занных с квант. переходами эл-нов из наиболее высоких возбуждённых со­стояний в основное. Явление было объяснено тем, что А. возбуждённых атомов становится более вероятным процессом, чем их излучат, переход в осн. состояние, и свечение этих линий затухает.

Наиболее полно исследована А. вблизи поверхности металла, т. к. она используется в автоионном микро­скопе для получения увеличенного изображения поверхности (см. Ионный проектор).

Вероятность А. у поверхности ме­талла оказывается значительно боль­шей, чем в свободном пр-ве при той же напряжённости поля, что обусловлено действием сил «изображения», сни­жающих потенц. барьер (см. Шоттки эффект). Однако А. возможна лишь в том случае, когда расстояние атома от поверхности превышает нек-рое критич. расстояние xкр. Это связано с тем, что при обычных темп-pax для осуществления туннельного перехода эл-на в металл необходимо, чтобы осн. уровень энергии эл-на в атоме был под­нят электрич. полем хотя бы до уров­ня Ферми (см. Ферми энергия) в метал­ле (рис. 2).

Если атом приблизится к поверхности на xкр, то уровень энергии эл-на в атоме окажется ниже уровня Ферми в металле и W резко уменьшится. С другой стороны, уда­ление атома от поверхности металла

8
при x>xкр также приводит к резкому уменьшению W. Поэтому А. практи­чески имеет место в пределах нек-рой зоны вблизи хкр. В рабочем режиме автоионного микроскопа полуширина этой зоны составляет 0,2—0,4 Å.

Явление А. используется также при создании ионных источников для масс-спектрометров. Достоинством та­ких источников явл. отсутствие в них накалённых электродов, а также то, что в них удаётся избежать диссоциа­ции анализируемых молекул. Кроме того, с помощью таких ионных источ­ников можно наблюдать специфиче­ские хим. реакции, происходящие лишь в сильных электрич. полях.

•Мюллер Э. В., Тьен Тцоу Цонг, Полевая ионная микроскопия, поле­вая ионизация и полевое испарение, пер. с англ., М., 1980; Физические основы полевой масс-спектрометрии, под ред. Э. Н. Короля, К., 1978.

А. Г. Наумовец.

АВТОИОННЫЙ МИКРОСКОП, то же, что ионный проектор.

АВТОКОЛЕБАНИЯ, незатухающие колебания, поддерживаемые внеш. ис­точниками энергии, в нелинейной диссипативной системе, вид и св-ва к-рых определяются самой системой. Тер­мин «А.» введён в 1928 А. А. Андро­новым.

А. принципиально отличаются от остальных колебат. процессов в диссипативной системе тем, что для их поддержания не требуется периодич. воздействий извне. Колебания скри­пичной струны при равномерном дви­жении смычка, тока в радиотехн. генераторе, воздуха в органной трубе, маятника в часах — примеры А. В про­стейших автоколебат. системах мож­но выделить колебат. систему с зату­ханием, усилитель колебаний, нели­нейный ограничитель и звено обрат­ной связи. Напр., в ламповом генера­торе (генераторе Ван-дер-Поля — рис. 1) колебат. контур, состоящий из ёмкости С, индуктивности L и со­противления R, представляет собой колебат. систему с затуханием, цепь катод — сетка и индуктивность L' об­разуют цепь обратной связи. Случайно возникшие в контуре LC малые соб­ственные колебания через катушку L' управляют анодным током ia лам­пы, к-рый усиливает колебания в контуре при соответствующем взаим­ном расположении катушек L и L',— положительная обратная связь. Если потери в контуре меньше, чем вноси­мая таким образом в контур энергия, то амплитуда колебаний в нём нара­стает. С увеличением амплитуды коле­баний, вследствие нелинейной зави­симости анодного тока iа от напря­жения V на сетке лампы, поступаю­щая в контур энергия уменьшается и при нек-рой амплитуде колебаний сравнивается с потерями. В результате устанавливается режим стационар­ных периодич. колебаний, в к-ром все потери энергии компенсирует анод­ная батарея. Т. о., для установления А. важна нелинейность, приводящая к ограниченности колебаний, т. е.

нелинейность управляет поступлением и тратами энергии источника. Рас­смотренный режим возникновения А., не требующий нач. толчка, наз. ре­жимом мягкого возбуждения.

Встречаются системы с жёстким воз­буждением А. Это такие системы, в к-рых колебания самопроизвольно на­растают только с нек-рой нач. ам­плитуды. Для перехода таких систем в режим стационарной генерации не­обходимо нач. возбуждение (толчок) с амплитудой, большей нек-рого критич. значения. Амплитуда и частота А. определяются только параметра­ми системы, что отличает их как от собств. колебаний, частота к-рых опре­деляется параметрами системы, а ам­плитуда и фаза — нач. условиями, так и от вынужденных колебаний, амплитуда, фаза и частота к-рых опре­деляются внеш. силой. Периодиче­скому А. в фазовом пространстве соответствует замкнутая траектория, к к-рой стремятся все соседние тра­ектории,— т. н. устойчивый предель­ный цикл.

Для автоколебат. систем с неск. степенями свободы характерны такие явления, как синхронизация колеба­ний и конкуренция колебаний. Внеш. синхронизация А., или «захватывание частоты» (т. е. установление А. с часто­той и фазой, соответствующими частоте и фазе внеш. периодич. воздействия), широко используется для управления и стабилизации частоты мощных мало­стабильных генераторов с помощью высокостабильных маломощных (напр., в лазерах). Полоса захватывания — область расстроек между частотами собств. колебаний и внеш. сигнала, внутри к-рой устанавливается режим синхронизации,— расширяется при увеличении амплитуды внеш. воздей­ствия. Вне границы захватывания устойчивый режим генерации с ча­стотой внеш. силы сменяется режи­мом биений. Взаимная синхрониза­ция колебаний используется, напр., при работе неск. генераторов на общую нагрузку.

Конкуренция колебаний (мод), т. е. подавление одних колебаний дру­гими, в автоколебат. системе возмож­на, когда эти колебания черпают энергию из общего источника. При этом одна из нарастающих мод «орга­низует» дополнительное нелинейное затухание для других. При очень слабой связи между автоколебат. мо­дами они сосуществуют, не подавляя друг друга. При достаточно сильной связи выживает одна из них. При изменении соответствующих пара­метров в системах с конкуренцией мод переход от режима генерации одной из мод к режиму генерации другой мо­ды происходит скачком и характеризу­ется эффектом затягивания. Благодаря эффекту конкуренции оказывается возможным, в частности, создание на базе многомодовых резонаторов гене­раторов монохроматич. колебаний (см. Лазер).

Эффекты конкуренции и синхрони­зации во мн. случаях определяют возникновение в диссипативных не­равновесных средах (распределённых системах) сложных, хорошо организо­ванных (детерминированных) струк­тур, напр, периодич. нелинейных волн, ячеистых структур (см. Синер­гетика).

В автоколебат. системах с одной сте­пенью свободы возможны только про-





Рис. 1. Принципиаль­ная схема лампового ге­нератора: М — коэфф. взаимной индукции; Uc — напряжение смещения на сетке; Ua — напряжение анодной батареи.
стые периодич. А. В автоколебат. системах с неск. степенями свободы А. могут быть сложными периодическими и даже стохастическими. Стохастич. автоколебат. системы (пли генераторы шума) — это диссипативные системы, совершающие незатухающие хаотич. колебания (колебания со сплошным спектром) за счёт регулярных источ­ников энергии. Примером такого ге­нератора шума может служить лампо-



Рис. 2. Зависимость тока от напряжения элемента с невза­имно однозначной вольт-амперной хар-кой (напр., туннель­ного диода) — одно значение тока может соответствовать трём разл. значениям на­пряжения.
вый генератор (рис. 1), если в контур последовательно с индуктивностью до­бавить нелинейный элемент с невзаим­но однозначной вольт-амперной хар-кой (рис. 2). Получившийся генератор при определ. параметрах будет соз­давать колебания, неотличимые от случайных (стохастических). Приме­ром стохастич. А. в распределённых системах служит гидродинамич. тур­булентность, возникающая при те­чении жидкости с достаточно боль­шими скоростями.

• Харкевич А. А., Автоколебания, М., 1953; Горелик Г. С., Колебания и волны, М.,1959;АндроновА. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Рабинович М. И., Стохасти­ческие автоколебания и турбулентность, «УФН», 1978, т. 125, М 1, с. 123.



М. И. Рабинович.


Каталог: units -> fmf -> department of theoretical physics and teaching physics -> files
files -> Закон тяготения эйнштейна коэффициенты эйнштейна де хааза эф­фект
units -> Учебная дисциплина Б. 11. Новая и новейшая история стран Востока
units -> Виктор Максимович Жирмунский
units -> Производственная и преддипломная практики студентов иениМ направления подготовки 020201. 65 Биология и 020803. 65 Биоэкология в 2011-2012 учебном году
units -> М качественные и количественные методы исследования в психологии Вопросы к экзамену Определение и соотношение понятий «методология»
units -> Направление подготовки
files -> Лабораторная работа т–4 определение удельной теплоты


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал