Геномика и медицина Структура вирусного генома



страница5/5
Дата02.06.2018
Размер0,67 Mb.
1   2   3   4   5

Исследования генома человека

Как наука генетика возникла на рубеже XIX и XX веков. Многие официальной датой ее рождения считают 1900 год, когда Корренс, Чермак и де Фриз независимо друг от друга обнаружили определенные закономерности в передаче наследственных признаков. Открытие законов наследственности состоялось, по существу, вторично - еще в 1865 году чешский ученый-естествоиспытатель Грегор Мендель получил те же результаты, экспериментируя с садовым горохом. После 1900 года открытия в области генетики следовали одно за другим, исследования, посвященные строению клетки, функциям белков, строению нуклеиновых кислот, открытых Мишером в 1869 году, шаг за шагом приближали человека к разгадке тайн природы, создавались новые научные направления, совершенствовались новые методы. И, наконец, в конце XX века генетика вплотную подошла к решению одного из фундаментальных вопросов биологической науки - вопроса о полной расшифровке наследственной информации о человеке.

В реализации грандиозного проекта по расшифровке генетического кода ДНК, получившего название HUGO (Human Genome Organization) приняли участие 220 ученых из разных стран, в том числе и пять советских биологов. В нашей стране была создана собственная программа «Геном человека», руководителем которой стал академик Александр Александрович Баев.

Впервые идея организации подобной программы была выдвинута в 1986 году. Тогда идея показалась неприемлемой: геном человека, то есть совокупность всех его генов содержит около трех миллиардов нуклеотидов, а в конце 80-х годов затраты на определение одного нуклеотида составляли около 5 долларов США. Кроме того технологии 80-х позволяли одному человеку определять не более 100 000 нуклеотидов в год. Тем не менее, уже в 1988 году Конгресс США одобрил создание американского проекта исследований в этой области, руководитель программы Дж. Уотсон так определил ее перспективы: «Я вижу исключительную возможность для улучшения человечества в ближайшем будущем». Осуществление российской программы началось в 1989 году.

Сейчас определение одного нуклеотида обходится всего в один доллар, созданы аппараты, способные секвенировать (от лат. sequi - следовать) до 35 млн. последовательностей нуклеотидов в год. Одним из важных достижений стало открытие так называемой полимеразной цепной реакции, позволяющей из микроскопических количеств ДНК за несколько часов получить объем ДНК, достаточный для генетического анализа. По оценкам специалистов существует возможность завершения проекта через 15 лет, и уже сейчас программа приносит полезные результаты. Суть работ заключается в следующем: сначала проводится картирование генома (определение положения гена в хромосоме), локализация некоторых генов, а после этого секвенирование (определение точной последовательности нуклеотидов в молекуле ДНК). Первым геном, который удалось локализовать, стал ген дальтонизма, картированный в половой хромосоме в 1911 году. К 1990 году число идентифицированных генов достигло 5000, из них картированных 1825, секвенированных - 460. Удалось локализовать гены, связанные с тяжелейшими наследственными болезнями, такими, как хорея Гентингтона, болезнь Альцгеймера, мышечная дистрофия Дюшена, кистозный фиброз и др.

Таким образом, проект исследования генома человека имеет колоссальное значение для изучения молекулярных основ наследственных болезней, их диагностики, профилактики и лечения. Следует обратить внимание на то, что за последние десятилетия в индустриально развитых странах доля наследственных болезней в общем объеме заболеваний значительно увеличилась. Именно наследственностью обусловлена предрасположенность к раковым и сердечно-сосудистым заболеваниям. В значительной степени это связано с экологической ситуацией, с загрязнением окружающей среды, так как многие отходы промышленности и сельского хозяйства являются мутагенами, то есть изменяют человеческий генофонд. Учитывая современный уровень развития генетики можно предположить, что научные открытия будущего позволят путем изменения генома адаптировать человека к неблагоприятным условиям внешней среды. Что же касается борьбы с наследственными заболеваниями, то их лечение путем замены больных генов на здоровые кажется реальным уже сейчас. Все это означает, что человек получит возможность не только изменять живые организмы, но и конструировать новые формы жизни. В связи с этим возникает целый ряд серьезных вопросов.

На мой взгляд одним из наиболее важных вопросов является вопрос об использовании генетической информации в коммерческих целях. Несмотря на то, что и участники проекта HUGO, и представители международных организаций, в частности ЮНЕСКО, единодушны в том, что любые результаты исследований по картированию и секвенированию генома должны быть доступны всем странам и не могут служить источником прибыли, частный капитал начинает играть все большую роль в генетических исследованиях. Когда появилась программа HUGO, возникли так называемые геномные компании, которые занялись самостоятельно занялись расшифровкой генома. В качестве примера можно привести американскую организацию под названием Institute of Genomic Research (TIGR) или компанию Human Genome Sciences Inc. (HGS). Между крупными фирмами идет ожесточенная борьба за патенты. Так в октябре 1994 Крэк Вентер, глава вышеупомянутой компании TIGR, о том, что в распоряжении его корпорации находится библиотека из 35000 фрагментов ДНК, синтезированных с помощью РНК на генах, полученных лабораторным путем. Эти фрагменты сравнили с 32 известными генами наследственных заболеваний. Оказалось, что 8 из них полностью идентичны, а 19 гомологичны. TIGR оказался обладателем ценнейшей научной информации, но его руководители заявили, что химическое строение всех последовательностей из этой библиотеки засекречено и будет сделано достоянием гласности только в том случае, если за компанией будет признано право собственности на все 35000 фрагментов. Это не единственный случай, а между тем, развитие генетики намного опережает развитие соответствующей законодательной базы. Хотя шаги в этом направлении предпринимаются (в России, например, в конце 1996 года был принят закон "О государственном регулировании в области генно-инженерной деятельности", в1995 был принят закон о биоэтике во Франции, в США Акт о гражданских правах запрещает дискриминацию при найме на работу по расовым, половым, религиозным и национальным признакам, при этом ген серповидноклеточной анемии, в частности у негров, может считаться расовым признаком, другой закон запрещает дискриминацию при найме на работу лиц с пониженной трудоспособностью, а таковыми могут считаться и лица с отягощенной наследственностью, большое значение имеет так называемый принцип Тарасовой, обязывающий врачей нарушать конфиденциальность врачебных сведений с целью предотвращения возможного вреда обществу), международных актов, регулирующих все стороны деятельности, связанной с генетикой, пока не существует.

  Эволюция человеческого вида не ограничена прошлым. Механизмы, которые вызывают изменения в частоте генов от поколения к поколению, продолжают работать и в настоящее время. С течением времени биологическая эволюция все в большей и большей степени дополняется культурной эволюцией, которая становится одной из главных сил, вызывающей биологические изменения внутри человеческого вида. Знание этих механизмов должно помочь в определении тенденции развития генетической структуры человеческих популяций в будущем. В большинстве стран за последние несколько поколений условия жизни населения сильно изменились и продолжают меняться в нарастающем темпе. Благодаря успехам гигиены и медицины значительно улучшилось здоровье человека, и возросла продолжительность его жизни. Эти обстоятельства сказываются на репродуктивности и смертности и, следовательно, влияют на генетической структуре будущих поколений. 

Прогресс науки и техники подвергает современных людей существенно большим рискам неблагоприятной изменчивости, чем это было на протяжении всего предшествующего периода развития человеческой цивилизации. Физические, химические и, возможно, биологические (вирусные) мутагены могут нести серьезную угрозу для генетической структуры популяции в будущем. Поэтому одной из актуальнейших задач современного естествознания является изучение процессов генетической изменчивости человека и разработка системы мер для предотвращения неблагоприятных тенденций эволюции. В указанном аспекте важное значение имеет развитие генетики человека, особенно в области генетического консультирования и скрининга наследственных аномалий, что может сохранить приемлемый уровень здоровья будущих поколений. 

Мутация – это всеобщее свойство живых организмов, лежащее в основе эволюции и селекции всех форм жизни и заключающееся во внезапно возникающем изменении генетической информации. Когда мутация происходит в отдельном гене, то говорят о генных или точковых мутациях. При изменении структуры хромосом или их числа, речь идет о хромосомных мутациях. Все генетическое разнообразие людей так или иначе является следствием мутаций.

 С достаточной уверенностью можно утверждать, что многие мутации генов и практически все аберрации хромосом неблагоприятны как для индивида, так и для популяции; большинство хромосомных аберраций губит зиготу в период эмбрионального развития, меньшая часть таких зигот доживает до рождения и продолжает существовать дальше, но пораженные пациенты страдают тяжелыми врожденными пороками. Генные мутации часто ведут к врожденным заболеваниям с простым типом наследования или к дефектам в мультифакториальных генетических системах. Очень большая часть генных мутаций ведет к изменениям аминокислотной последовательности белков и не вызывает явной функциональной недостаточности, примером чему служат варианты гемоглобина. Доля благоприятных мутаций, в лучшем случае, очень незначительна.

Частоты численных аберраций хромосом увеличивается с возрастом матери, поэтому любой сдвиг в материнском возрасте приведет к соответствующему изменению в общей распространенности таких хромосомных мутаций. Во многих современных популяциях существует тенденция к уменьшению числа детей в семье и концентрация деторождения в возрастной группе с наименьшим риском (женщины в возрасте от 20 до 30 лет). Было подсчитано, что в западных странах и в Японии эта тенденция должна была уменьшить число детей с синдромом Дауна на 25...40%. Однако ряд последних исследований показывает, что склонность многих современных женщин откладывать рождение ребенка на несколько более поздний возраст легко может привести к изменению этой тенденции на противоположную. Известно, что самое эффективное средство обнаружения аномалий хромосом – это пренатальная диагностика. Во многих странах эту диагностическую процедуру предлагают проводить всем женщинам старше 35 лет. Если бы все пожилые беременные женщины действительно через нее проходили, частота синдрома Дауна безусловно бы снизилась. Можно предположить, что с увеличением безопасности пренатальной диагностики для матери и ребенка, амниоцентез станет обычным для большинства беременностей в развитых странах. В таких условиях можно будет почти полностью избежать аномалий, обусловленных численными или структурными аберрациями хромосом. Для многих генов частота мутаций увеличивается с возрастом отца, поэтому любой сдвиг в возрастной структуре отцов соответствующим образом повлияет на частоту мутаций. Для редких аутосомно-доминантных состояний изменения под действием возраста отца не будут столь крупными, как для численных хромосомных аберраций; влияние возраста отца на частоту мутаций в доминантных и сцепленных с Х-хромосомой генов меньше возраста матери на частоту численных аномалий хромосом. С медицинских позиций общее воздействие отцовского возраста представляется относительно небольшим и практически не принимается в расчет фактический риск поражения доминантной мутацией ребенка, имеющего пожилого отца. Любой возможный подъем уровня радиации, любое облучение может на несколько процентов увеличить частоту мутаций. Принимая во внимание флуктуации «спонтанной» частоты мутаций, обусловленной, например, изменениями возрастной структуры родителей, какое-либо увеличение, связанное с радиацией, может оказаться даже незамеченным без применения тонких эпидемиологических методов. Все же эффект имеет место, особенно с учетом действия техногенных факторов, включая техногенные катастрофы. Следовательно, одной из основных задач профилактики повышенной частоты мутаций у человека является поддержание радиации на низком уровне. О воздействии химических мутагенов на популяцию человека известно слишком мало. Можно предположить, что человечеству придется смириться с определенным числом химически индуцированных мутаций, поскольку общество не может отказаться от тех преимуществ, которые дают ему достижения современной химии.


Проект "Геном человека" (Human Genome Project)
Наиболее масштабным и дорогостоящим биологическим научно-исследовательским проектом считают проект «Геном человека». Во время его 15-тилетней истории возникла биоинформатика, т.е. то, чем мы, участники медицинских проектов распределенных вычислений (РВ), помогаем заниматься коллективам исследователей опасных болезней.

Проект можно рассматривать и в некотором роде как проект распределенных вычислений. Да, технологически проект построен, безусловно, совсем на других принципах, чем «классические» проекты РВ, где необходимые вычислительные мощности складываются из персональных компьютеров участников. В проекте «Геном человека» всю работу проворачивали мощные суперкомпьютеры и специализированные вычислительные системы-автоматы. Но в более широком смысле, этот проект похож на любой проект РВ фундаментальностью поставленных целей, огромным количеством потребовавшихся вычислений, открытостью результатов и соревновательной составляющей — в проекте приняли участие десятки государственных и коммерческих научных организаций со всего мира, действующих заодно, но преследующих разные цели.

Поэтому очень интересно проследить историю проекта «Геном человека», тем более что разворачивалась она в 1990-х гг. на фоне стремительного развития компьютерных технологий, сыгравших определяющую роль в его успешном завершении.

В 1988 г. один из первооткрывателей знаменитой двойной спирали ДНК, нобелевский лауреат Дж. Уотсон, публично высказал мысль о том, что наука вплотную приблизилась к раскрытию химической основы наследственности человека. К тому времени было уже известно, что наследственный аппарат человека, геном, составляет около 3 млрд. нуклеотидных пар. В то время эта величина казалась необозримо большой, и сама мысль, что такой объем информации может быть получен, представлялась совершенно фантастической.

В 1980-е годы технологии были слишком примитивными для решения задачи расшифровки генома и среди биологов было много противников этого проекта. Биологи всерьез опасались, что их всех заставят бесконечное количество раз выполнять скучные операции с ДНК человека. Как сказал один юный кандидат наук: «Я не хочу положить свою жизнь на то, чтобы определить последовательность 12-й хромосомы от 100 000-й до 200 000-й пары оснований». Такие опасения рассеялись после появления новых технологий, позволивших передать машинам рутинную работу по определению последовательности. И 1990-е годы вошли в историю как годы уверенного совершенствования возможностей определять последовательность полных геномов.

В 1988 г. средства на изучение генома человека выделило Министерство энергетики, а в 1990 г. — Конгресс США. В Роквилле (штат Мэриленд) появился Национальный институт исследования генома человека (National Human Genome Research Institute, NHGRI), директором которого стал Фрэнсис Коллинз (Francis Collins), и работа над проектом пошла полным ходом.



1995. NHGRI публикует первую полную последовательность ДНК живого организма — бактерии Haemophilus influenzae. За этой бактерий вскоре последовали другие организмы.

1996. Определен первый геном эукариотической клетки (т. е. сложноорганизованной клетки, ДНК которой заключена в ядре) — клетки дрожжей Saccharomyces cerevisiae. Этим открытием увенчались совместные усилия шестисот ученых из Европы, Северной Америки и Японии.

1998. Опубликована первая последовательность ДНК многоклеточного организма — плоского червя Caenorhabditis elegans. Число хромосом и их длина различны у разных биологических видов. В клетках бактерий всего одна хромосома. Так, размер генома бактерии Mycoplasma genitalium — 0,58 Мб (Мегабаза — от английского слова «base» — основание), у бактерии кишечной палочки Escherichia coli в геноме 4,2 Мб, у растения Arabidopsis thaliana — 100 Мб, у плодовой мушки Drosophila melanogaster — 120 Мб. Самая маленькая хромосома клеток человека Homo sapiens содержит ДНК длиной 50 Мб, самая большая (хромосома 1) — 250 Мб. До 1996 г. наибольший участок ДНК, выделяемый из хромосом с помощью реактивов, имел длину 0,35 Мб, а на лучшем оборудовании их структура расшифровывалась со скоростью 0,05–0,1 Мб в год при стоимости $1–2 за основание. Иными словами, только на эту работу понадобилось бы примерно 30 тыс. дней (почти век) и $3 млрд.

Совершенствование технологии к 1998 г. повысило производительность до 0,1 Мб в день (36,5 Мб в год) и понизило стоимость до $0,5 за основание. Использование новых электромеханических устройств, которые к тому же потребляют меньше реактивов, позволило уже в 1999 г. ускорить работы еще в 5 раз и уменьшить стоимость до $0,25 за основание (для человеческой ДНК еще дешевле).

Знаковой фигурой в этом процессе стал Крейг Вентер (Craig Venter), бывший ведущий сотрудник NHGRI, основавший в 1998 г. собственную коммерческую компанию «Силера джиномикс» (Роквилл, штат Мэриленд). В распоряжении Вентера оказался огромный парк компьютеров, который считался тогда вторым по мощности в мире. Триста суперкомпьютеров стоимостью около 80 миллионов долларов круглосуточно обрабатывали огромные объемы данных.

Вентер внедрил в науку метод определения последовательности ДНК, позднее названный «методом беспорядочной стрельбы», который еще называют «методом пулеметной очереди» или «методом стрельбы из дробовика». Суть метода в том, что определяемую ДНК организма разбивают на множество небольших фрагментов, каждый из которых вводят в автомат, определяющий последовательность ДНК. Нечто похожее получится, если разодрать книгу по страницам и раздать их разным читателям. После того как будут определены последовательности каждого фрагмента, в действие вводят сложнейшие компьютерные программы, заново собирающие исходную последовательность. Такое интенсивное использование информационных технологий объясняет, почему многие ученые назвали новую область исследований генома биоинформационной революцией.

К концу 1999 г. было расшифровано свыше двух десятков геномов. Каждое такое достижение требовало определения все более и более длинной последовательности и было важной вехой на пути к определению собственно генома человека.

В июне 2000 года Крейг Вентер и Фрэнсис Коллинз, руководитель проекта «Геном человека» в NHGRI и Национальных институтах здоровья США, объявили о событии, названном ими «первой сборкой генома человека». По существу, это была первая реконструкция полного генома человека, выполненная методом беспорядочной стрельбы.

В феврале 2001 г. Международный консорциум, в который вошли помимо NHGRI и биотехнологической компании «Силера джиномикс», 16 организаций из Великобритании, США, Франции, Германии, Японии и Китая, обнародовали результаты колоссальной работы — первый набросок генома человека.

На протяжении следующих лет различные группы ученых во всем мире постепенно расшифровывали хромосомы человека, периодически сообщая о результатах своей работы. Так, в 2003-м было объявлено о полной расшифровке ДНК, оставалась только первая хромосома человека — последняя из нерасшифрованных хромосом.

И вот, 17 мая 2006 г. исследователи Wellcome Trust Sanger Institute совместно с американскими и английскими коллегами объявили об окончании последнего этапа работы по расшифровке полного генома человека — секвенировании самой большой, первой хромосомы. Об этом сообщается в статье S.G. Gregory et al. «The DNA sequence and biological annotation of human chromosome 1», опубликованной 18 мая в журнале Nature.

В последовательность 1-й хромосомы входит 223 569 564 нуклеотидных оснований, что составляет около 8% от человеческого генома. Она кодирует в два раза больше генов, чем средняя человеческая хромосома – более 3000 генов, включая те, мутации которых лежат в основе развития более 350 известных заболеваний, в том числе некоторых типов рака, болезней Альцгеймера и Паркинсона, гиперлипидэмии и порфирии. В ходе последнего этапа секвенирования идентифицировано более 1000 новых генов, что должно помочь ученым в разработке новых диагностических тестов и методов терапии различных заболеваний.

По словам доктора Марка Уолпорта (Mark Walport), директора Wellcome Trust, проект «Геном человека» обеспечил исследователей огромным количеством информации о человеческих генах и их возможных вариациях. Эта информация необходима для получения ответов на вопросы о причинах тех или иных состояний человеческого организма.

Весь этот огромный массив информации содержится в многочисленных базах данных и электронных библиотеках со свободным доступом для ученых со всего мира. Этой возможностью последние охотно пользуются, применяя полученные данные в многочисленных исследованиях и проектах, порой самого фантастического толка. Кроме того, в настоящее время с различными прикладными целями активно продолжается расшифровка геномов многих организмов.


Литература


  1. В.Н. Сойфер. Международный проект «Геном человека», 1999.

  2. Л.Л.Киселев. Вестник. Геном человека и биология XXI века. / РАН (том 70, №5, с. 412-424 (2000)

  3. Б.В.Громов. Поведение бактерий. Соросовский образовательный журнал, № 6, 1997.

  4. С.А.Боринская, Н.К.Янковский. Структура прокариотических геномов. Молекулярная биология, 1999, 33 (6):941-957.

  5. Более подробно об истории изучения бактериальных геномов: Г.Стент, Р.Кэлиндар. Молекулярная генетика. М., "Мир", 1991.


Поделитесь с Вашими друзьями:
1   2   3   4   5


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница