И сертификация



страница29/35
Дата24.08.2017
Размер3,99 Mb.
1   ...   25   26   27   28   29   30   31   32   ...   35
Глава 5. Концепция неопределенности измерений

В 1993 г. под эгидой семи международных организаций, в том числе МКМВ, МЭК, ИСО, МОЗМ, было издано «Руководство по выражению неопределенности измерений» (далее  Руковод-ство). Целями Руководства были:

  • обеспечение полной информацию о том, как составлять отчеты о неопределенности измерений;

  • представление основы для международного сопоставления результатов измерений;

  • предоставление универсального метода для выражения и оценивания неопределенности измерений, применимого ко всем видам измерений и всем типам данных, используемых при измерениях.

В 2003 г. введены в действие Рекомендации по межгосу-дарственной стандартизации РМГ 43-2001 «Применение «Руковод-ства по выражению неопределенности измерений». Они распро-страняются на методы оценивания точности результатов измерений, содержат практические рекомендации по применению Руководства и показывают соответствие между формами представления резуль-татов измерений с использованием погрешности и неопределен-ности измерений.

Руководство рекомендует выражать характеристики точности измерений в показателях неопределенности измерений, а не в показателях погрешности измерений, принятой в отечественной метрологической практике. Вместо понятия истинное значение измеряемой величины вводится понятие оцененное значение.

Вместо деления погрешностей по природе их появления на систематические и случайные вводится деление по способу оценивания неопределенностей – методами математической статистики или иными методами.

Причин появления концепции неопределенности измерений довольно много, но основные из них следующие.



  1. Появление новых (нетрадиционных) областей измерения (психология, социология, медицина и др.), где постулаты традиционной метрологии (физическая величина, единица измерений, мера, эталон, погрешность измерения) не работают;

  2. Влияние новых научных направлений кибернетического толка (кибернетики, теории информации, математической статистики и др.), в которых понятие «неопределенность» играет существен-ную роль. Это, как правило, связано с широким толкованием понятия неопределенности как «сомнения» в том, что, например, результат измерения представляет значение измеряемой величи-ны. Примеры такого толкования термина неопределенности: неопределенность выбора устраняется информацией, степень неопределенности множества зависит от числа элементов в множестве и др.

  3. Отход от понятия истинного значения измеряемой величины как пепознаваемого, в силу чего понятие погрешности теряет смысл и погрешность невозможно вычислять, т.к. она содержит никогда не известное истинное значение.

  4. Раздельная оценка систематических и случайных погрешностей и использование для них разных характеристик (доверительных границ и СКО) дает завышенные оценки погрешности. Кроме того, применение двух характеристик погрешности при определении результата неудобно, особенно при его дальнейшем использовании.

  5. Необходимость простой в применении и общепризнанной универсальной методики для характеристики результата измерения.



5.1 Основные положения концепции неопределенности измерений

В Руководстве вместо понятия «погрешность измерения» вводится понятие «неопределенность измерения». При этом неопределенность измерения трактуется в двух смыслах:



  1. В широком смысле как «сомнение» относительно достоверности результата измерения. Например, сомнение в том, насколько точно после внесения всех поправок результат измерения представляет значение измеряемой величины.

  2. В узком смысле неопределенность измерения понимается как параметр, связанный с результатом измерения, который характеризует разброс значений, которые могли бы быть обоснованно приписаны измеряемой величине.

В данной концепции неопределенность измерения понимает-ся именно в узком смысле.

Неопределенность измерения – параметр, связанный с результатом измерения, который характеризует дисперсию (разброс) значений, которые могли бы быть обоснованно приписаны измеряемой величине. Необходимо ясно представлять, что неопределенность измерения – это не доверительный интервал в традиционном понимании (при заданной доверительной вероятности). Вероятность здесь характеризует меру доверия, а не частоту события.

Неопределенность измерения обычно имеет много составляющих. Некоторые из них могут быть оценены из статистического распределения результатов рядов измерений и могут характеризоваться экспериментальными стандартными отклонениями (аналог СКО). Другие составляющие оценивают из предполагаемых распределений вероятностей, основанных на опыте или другой информации. Они также могут характеризоваться стандартными отклонениями.

Неопределенность результата измерения отражает отсутствие точного знания значения измеряемой величины. Оно даже после внесения поправки на известные систематические погрешности все еще является только оценкой измеряемой величины вследствие неопределенности, возникающей из-за случайных эффектов и неточной поправки результата на систематические погрешности.

Водятся две оценки неопределенности:



- оценка по типу Аметод оценивания неопределенности путем статистического анализа рядов наблюдений;

- оценка по типу В – метод оценивания иным способом, чем статистический анализ рядов наблюдений.

Целью классификации на тип А и тип В является показ двух различных способов оценки составляющих неопределенности.

Стандартную неопределенность типа А получают из функции плотности вероятности, полученной из наблюдаемого распределения по частости.

Стандартную неопределенность типа В получают из предполагаемой функции плотности вероятностей, основанной на уверенности в том, что событие произойдет. Эта вероятность часто называется субъективной вероятностью.



В большинстве случаев измеряемая величина Y не является прямо измеряемой, а зависит от m других измеряемых величин X1, X2, …, Xm , называемых входными, через функциональную зависимость:

Cами входные величины Х, от которых зависит выходная величина Y, рассматриваются как измеряемые величины. В свою очередь они могут зависеть от других величин, включая поправки и поправочные коэффициенты на систематические эффекты. Это ведет к сложной функциональной зависимости f, которая, как правило, не может быть записана точно. Кроме того, f можно определить экспериментально или она может существовать как алгоритм, который должен быть реализован численно.



Оценку входной измеряемой величины Y, обозначенную как y, получают из приведенного выше уравнения, используя входные оценки х1, х2, …, хm для значений величин Х1, Х2, …, Хm. Выходная оценка y, которая является результатом измерения, выражается уравнением:




Поделитесь с Вашими друзьями:
1   ...   25   26   27   28   29   30   31   32   ...   35


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница