И сертификация



страница8/35
Дата24.08.2017
Размер3,99 Mb.
1   ...   4   5   6   7   8   9   10   11   ...   35
метода измерений, средств измерений (инструмен-та) и оператора, проводящего измерения. Несовершенство каждо-го этого компонента измерения вносит вклад в погрешность измерения. Поэтому в общем виде погрешность можно выразить следующей формулой:

где Мметодическая погрешность (погрешность метода); И - инструментальная погрешность (погрешность средств измерений); Л - личная (субъективная) погрешность.

Основные причины возникновения инструментальной погрешности приведены в разделе о средствах измерений.

Методическая погрешность возникает из-за недостатков используемого метода измерений. Чаще всего это является следстви-ем различных допущений при использовании эмпирических зави-симостей между измеряемыми величинами или конструктив-ных упрощений в приборах, используемых в данном методе измерений.

Субъективная погрешность связана с такими индивидуальными особенностями операторов, как внимательность, сосредоточенность, быстрота реакции, степень профессиональной подготовленности. Такие погрешности чаще встречаются при большой доле ручного труда при проведении измерений и почти отсутствуют при использовании автоматизированных средств измерений.
4.4 Классификация погрешностей измерений

Представленная выше классификация погрешностей измерений связана с причинами их возникновения. Кроме этого существуют и другие признаки, по которым классифицируются погрешности.

По характеру проявления (свойствам погрешностей) они разделяются на систематические и случайные, по способам выражения  на абсолютные и относительные.

Абсолютная погрешность выражается в единицах измеряемой величины, а относительная погрешность представляет собой отношение абсолютной погрешности к измеренному (действительному) значению величины и ее численное значение выражается либо в процентах, либо в долях единицы.

Опыт проведения измерений показывает, что при многократ-ных измерениях одной и той же неизменной физической величины при постоянных условиях погрешность измерений можно представить в виде двух слагаемых, которые по-разному проявляются от измерения к измерению. Существуют факторы, постоянно или закономерно изменяющиеся в процессе проведения измерений и влияющие на результат измерений и его погрешность. Погрешности, вызываемые такими факторами, называются систематическими.



Систематическая погрешность – составляющая погреш-ности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. В зависимости от характера изменения систематические погрешности подразделяются на постоянные, прогрессирующие, периодические, изменяющиеся по сложному закону.

Близость к нулю систематической погрешности отражает правильность измерений.

Систематические погрешности обычно оцениваются либо путем теоретического анализа условий измерения, основываясь на известных свойствах средств измерений, либо использованием более точных средств измерений. Как правило, систематические погрешности стараются исключить с помощью поправок. Поправка представляет собой значение величины, вводимое в неисправленный результата измерения с целью исключения систематической погрешности. Знак поправки противоположен знаку величины. На возникновение погрешностей влияют также и факторы, нерегулярно появляющиеся и неожиданно исчезающие. Причем интенсивность их тоже не остается постоянной. Результаты измерения в таких условиях имеют различия, которые индивидуально непредсказуемы, а присущие им закономерности проявляются лишь при значительном числе измерений. Погрешности, появляющиеся в результате действия таких факторов, называются случайными погрешностями.

Случайная погрешность – составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.

Незначительность случайных погрешностей говорит о хорошей сходимости измерений, то есть о близости друг к другу результатов измерений, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью.

Обнаруживаются случайные погрешности путем повторных измерений одной и той же величины в одних и тех же условиях. Они не могут быть исключены опытным путем, но могут быть оценены при обработке результатов наблюдений. Деление погрешностей измерений на случайные и систематические очень важно, т.к. учет и оценка этих составляющих погрешности требует разных подходов.

Факторы, вызывающие погрешности, как правило, можно свести к общему уровню, когда влияние их на формирование погрешности является более или менее одинаковым. Однако некоторые факторы могут проявляться неожиданно сильно, например, резкое падение напряжения в сети. В таком случае могут возникать погрешности, существенно превышающие погрешности, оправданные условиями измерений, свойствами средств измерений и метода измерений, квалификацией оператора. Такие погрешности называются грубыми, или промахами.



Грубая погрешность (промах) – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных значений погрешности. Грубые погрешности необходимо всегда исключать из рассмотрения, если известно, что они являются результатом очевидных промахов при проведении измерений. Если же причины появления резко выделяющихся наблюдений установить нельзя, то для решения вопроса об их исключении используют статистические методы. Существует несколько критериев, которые позволяют выявить грубые погрешности. Некоторые из них рассмотрены ниже в разделе об обработке результатов измерений.
4.5 Случайные погрешности

4.5.1 Статистическая устойчивость распределения наблюдений

При наличии случайных погрешностей измерений прибегают к многократным наблюдениям и последующей статистической обработке их результатов. При этом результаты наблюдений и измерений и случайные погрешности рассматриваются как случайные величины, то есть величины, которые характеризуют случайное явление и в результате измерений принимают то или иное значение. Обработка результатов таких наблюдений возможна, если их рассеивание обнаруживает определенные статистические закономерности. Если же результаты наблюдений разбросаны произвольно, то использовать какие-либо способы обработки таких наблюдений и получить результат измерения не представляется возможным.

Поэтому при формулировании конкретной задачи измерений и при получении результатов наблюдений необходимо прежде всего проверить наличие закономерностей в распределении наблюдений. Если такие закономерности обнаруживаются, то распределение наблюдений обладает статистической устойчивостью и для их обработки возможно применение методов теории вероятностей и математической статистики. При этом необходимо отметить, что обнаружение статистических закономерностей в распределении результатов наблюдений проводится после исключения из них всех известных систематических погрешностей.

4.5.2 Дифференциальные и интегральные законы распределения случайной величины

Случайная величина наилучшим и исчерпывающим образом характеризуется в теории вероятностей законом ее распределения. Этот закон устанавливает связь между возможными значениями случайной величины и соответствующими этим значениям вероятностям их появления. Существует две формы описания закона распределения случайной величины  дифференциальная и интегральная. Причем, в метрологии в основном используется дифференциальная форма  закон распределения плотности вероятностей случайной величины.



Дифференциальный закон распределения характеризуется плотностью распределения вероятностей f(x) случайной величины х. Вероятность Р попадания случайной величины в интервал от х1 до х2 при этом дается формулой:

Графически эта вероятность представляет собой отношение площади под кривой f(x) в интервале от х1 до х2 к общей площади, ограниченной всей кривой распределения. Как правило, площадь под всей кривой распределения вероятностей нормируют на единицу.



В данном случае представлено распределение

Поделитесь с Вашими друзьями:
1   ...   4   5   6   7   8   9   10   11   ...   35


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница