Кафедра геоинформатики



страница7/11
Дата26.10.2016
Размер1.2 Mb.
ТипРеферат
1   2   3   4   5   6   7   8   9   10   11

Предназначен для измерения ходов бурового насоса.

Принцип действия - основным исполнительным узлом датчика ходов насоса является индуктивный датчик, который срабатывает от приближения металла, выдавая импульсы кратно ходам насоса.

Крепление - датчик крепится к корпусу насоса с помощью крепежного механизма, входящего в комплект датчика.

Датчик электропроводности


Датчик электропроводности ПЖ на выходе


Диапазон измерения, м/м.

0,1 -10

Уровень выходного сигнала, В.

0-5

Напряжение питания, В.

 ±12

Масса, кг.

3,0

Габариты, мм.

150х110х520




Предназначен для измерения электропроводности промывочной жидкости (ПЖ).

Принцип действия датчика основан на измерении электропроводности жидкостного витка связи индукционным трансформаторным методом.

Крепление - в желобе с помощью крепежного приспособления, прилагаемого к датчику.

Индикаторное табло


Индикаторное табло к датчику

момента на ключе.

Индикаторное табло к датчику


Количество элементов мнемоиндикации, шт.

40

Уровень входного сигнала, В.

0-5

Напряжение питания, В/Гц

220/50

Масса, кг.

2

Габариты, мм.

300х150х120

Тип исполнения

пыле-, брызгозащищенный.

Напряжение питания датчика, В/Гц

± 12




Индикаторное табло предназначено для визуализации измерений параметра, регистрируемых датчиком.

Информация отображается на индикаторном табло в мнемоническом и цифровом виде.

Индикаторное табло размещается в непосредственной близости от бурильщика.

! Индикаторное табло может быть совмещено с энергонезависимым регистратором, обеспечивая в этом случае регистрацию параметра в энергонезависимой встроенной памяти с последующим считыванием.

Пульт бурильщика


Пульт бурильщика (см. фото) предназначен для наглядного отображения основных технологических параметров бурения, вывода аварийной сигнализации и сообщений для бурильщика в процессе бурения.

Пульт бурильщика размещается на буровой в непосредственной близости от бурильщика под легким укрытием.

На индикаторном табло пульта бурильщика отображаются параметры:

  • крутящий момент ротора;

  • давление ПЖ на входе;

  • нагрузка на долото;

  • вес на крюке;

  • плотность ПЖ на входе;

  • уровень ПЖ в приемной емкости;

ПЖ - промывочная жидкость

  • расход ПЖ на входе;

  • расход ПЖ на выходе;

  • высота долота над забоем;

  • глубина;

  • механическая скорость бурения;

  • суммарное газосодержание бурового раствора.





Количество каналов:
- входные аналоговые сигналы - 22
- входные дискретные сигналы (TTL) - 8
- выходные дискретные (TTL) - 8
- входные/выходные (TTL) - 5

Разрядность АЦП - 12

Уровень входных сигналов: 0 – 5 В.; 0 – 10 В.

Канал связи пульта с компьютером:
- RS-485 (оптоизолированный)
- Радиоканал (433 МГц)

Напряжение питания: 150-260В

Температура окружающей среды: - 45 - +50 °С.

Габаритные размеры: 600х400х120 мм



2) на забойные модули (устанавливаемые на буровом инструменте в призабойной зоне)

1)оборотов долота

2)осевой нагрузки на долото

3)геофизические (ГК, КС, ПС, ВК и т.д.)

Можно составить обобщенный портрет этой технологии, удобный геофизику - каротажнику.

1. Весь процесс проектирования скважины, проводки, оперативной обработки материалов бурения и геофизики, комплексной интерпретации всей совокупности информации обрабатывается компьютером с помощью специально созданных программных систем.

2. Существует большое разнообразие в конструкции и размещении зондов ГК, ЭМК, ИК, ЭК.

3. Существует широко внедренная единая система передачи информации — гидроимпульсный канал связи. В то же время многие фирмы публикуют материалы по системам с электромагнитным каналом связи, дальность его не превышает 3,0 км. Вместе с тем, в организации работы канала (количество режимов, кодовые последовательности импульсов и т.д.), по-видимому, существует большое разнообразие, определяемое набором датчиков и технологией работ.

4. Главная задача оперативной интерпретации — правильная отбивка границ между литологическими разностями, чтобы своевременно корректировать траекторию и исключить перебурки. Для этого наверх передается необходимый объем информации, которую способен пропустить канал. Остальная информация запоминается внизу и считывается при подъеме инструмента.

5. Комплексная интерпретация включает геофизическую и техническую информацию (все параметры бурения) и существенно опирается на региональную базу данных. Геофизическая задача состоит в оценке коллекторов и их насыщения. Для достаточно точного решения этой задачи в условиях сильной неопределенности конфигурации сечения ГС и зоны проникновения заметна тенденция создания многозондовых приборов ГИС.

3.2.1.Модуль геонавигации.

Модуль геонавигации предназначен для оперативного управления проводкой скважин по геофизическим данным, получаемым по электромагнитному каналу связи, и позволяет повысить точность проводки стволов по продуктивному пласту, уменьшить количество, а в некоторых случаях исключить промежуточные каротажи, исключить ошибки в проводке горизонтальных скважин не по продуктивному пласту. Необходимость точной привязки местоположения забоя связана с тем, что продуктивный интервал имеет толщину порядка нескольких метров, ниже которых находится вода.

Гамма-каротаж (ГК) основан на том, что горные породы обладают некоторой, хотя и небольшой радиоактивностью. Гамма-каротаж состоит в измерении интенсивности естественного γ-излучения по стволу скважины. Для этого пользуются скважинным прибором, содержащим индикатор γ-излучения. В результате измерений получают кривую изменения γ-излучения по стволу скважины в масштабе глубины, называемую кривой гамма-каротажа (ГК).

Кривая ГК характеризует γ-активность пород, пересеченных скважиной, и в той или иной степени содержание в них радиоактивных элементов. Применение гамма-каротажа для изучения литологического разреза скважины основано на том, что породы различаются по содержанию в них радиоактивных веществ.

Характер связи между γ-активностью пород и их литологическими свойствами устанавливается для данного района на основе сопоставления кривых ГК с литологическим разрезом ранее пробуренных скважин и сопоставления измерений γ-активности керна с результатами его анализа. Как правило, содержание в породе радиоактивного вещества тем больше, чем больше в ней глинистого материала. В соответствии с этим глинистые пласты будут отмечаться на кривой ГК максимумами, а песчаные и чисто карбонатные – минимумами.

Ввиду того, что γ-излучение обладает большой проникающей способностью и, в частности, проходит через обсадные трубы с не очень большим поглощением, гамма-каротаж можно проводить как в необсаженных, так и в обсаженных скважинах. Это свойство создает гамма-каротажу большие оперативные преимущества по сравнению с другими методами промыслово-геофизических исследований.





Рис.3.4.Профиль горизонтальной скважины.

Модуль инклинометрических преобразователей (МИП) предназначен для измерения в процессе бурения и в статике, без циркуляции промывочной жидкости и передачи на модуль управления и связи зенитного угла, азимута и угла установки отклонителя.

Инклинометрические измерения в скважинах обычно проводятся аппаратурой, спускаемой на каротажном кабеле после бурения. Такая аппаратура не испытывает таких вибраций и ударов, как телесистемы в процессе бурения, поэтому требования к датчикам такого применения значительно ниже, а использовать их в процессе бурения не представляется возможным из-за невысокой надежности их работы в условиях бурения.

Определение параметров траектории ствола скважины опирается на информацию об углах положения оси скважинного прибора относительно плоскости горизонта (зенитный угол) и плоскости меридиана (азимут), а также знание протяженности скважины (по длине колонны труб или геофизического кабеля). Важным параметром для управления буровым агрегатом является угол отклонителя, т.е. поворот скважинного прибора вокруг оси скважины.

Если рассматривать задачу ориентации скважинного снаряда с теоретических позиций, то для ее решения необходимо задать положение (ориентацию) двух неколлинеарных векторов, ориентация которых, с одной стороны, априорно известна в опорной (базовой) системе координат, а с другой — может быть определена относительно скважинного снаряда. Задание лишь одного вектора не позволит определить ориентацию скважинного снаряда вокруг этого вектора. Таким образом, для определения ориентации скважинного снаряда необходимо измерение или моделирование некоторых векторных величин, которые в принципе могут иметь самую различную физическую природу. Учитывая объект ориентации, в настоящее время возможно использование комбинаций из четырех векторов: вектора силы тяжести, вектора напряженности магнитного поля Земли, вектора угловой скорости суточного вращения Земли и вектора некоторого реперного направления, заданного у устья скважины.

Определение угла наклона скважинного прибора осуществляется по измерениям проекций ускорения свободного падения g на три взаимно перпендикулярные пространственные оси, можно выделить основной принцип построения инклинометрических систем: определение азимута скважины с помощью трёхосного магнитометра, который по аналогии с акселерометром измеряет проекции напряженности магнитного поля Земли на три взаимно перпендикулярные пространственные оси.

На основании этих данных и измеренных проекций g после соответствующих вычислений получают значение азимута, угла наклона и угла положения отклонителя в любой точке ствола скважины и его пространственную траекторию. Очевидно, что таким способом траектория строится в магнитных координатах, поскольку азимут скважины отсчитывается от направления на магнитный полюс Земли.

Подавляющее большинство инклинометров, применяемых в необсаженных скважинах, построено на этом принципе. Эти приборы, не содержат подвижных элементов, отличаются достаточной вибро- и ударостойкостью и работают в широком диапазоне изменения температур. По точности выработки информации о направлении меридиана они вполне бы устраивали практически любого потребителя (поскольку производится ряд моделей с погрешностью около 0,2 град). Однако погрешность таких «магнитных» навигационных систем сильно зависит от наличия вблизи магнитометров магнитных масс, например, бурильных труб, обсадных колонн и т.п., и в ряде случаев может быть недопустимой. При зарезке боковых стволов из обсаженных скважин или при кустовом бурении с морских платформ оперативное управление траекторией ствола скважин при помощи таких «магнитных» систем нежелательно, хотя и возможно при некотором удалении от больших магнитных масс.

Исследования, анализ, лабораторные и стендовые испытания некоторых конструкций, близких по техническим требованиям и условиям эксплуатации, забойных телесистем при их длительной непрерывной работе (магнитомодуляционные, двухкоординатные на горизонтируемой платформе, трехкоординатные, неподвижно закрепленные, хемотронные и акселерометрические) показал, что система трехкоординатных, магнитомодуляционных и акселерометрических датчиков обеспечивает достаточную точность и надежность в работе в условиях бурения.

Имея набор отклонений показаний датчика изменения азимута при разных зенитных углах и углах разворота, внесенных в таблицу, можно программно учитывать и вносить поправки в результаты вычислений. На участках, где значения угла зенита и угла разворота не соответствуют точкам замеров при калибровке, используется линейная интерполяция.

В течение десяти лет стендовых и скважинных испытаний в условиях забоя разработанные датчики показали высокую надежность и стабильность характеристик.

Применение жестко закрепленных и ортогонально расположенных акселерометров АТ 1104 и феррозондов ТМК-18 по разработанной нами оригинальной методике внесения компьютерных температурных поправок и поправок за неортогональность установки датчиков при калибровке аппаратуры позволили получить следующие результаты в условиях повышенных вибраций при рабочих температурах в диапазоне 20-120С.:

 зенитный угол—0-1800,1;

 угол положения отклонителя—0-3600,1;

 азимутальный угол—0-3600,25.



Рис.3.5.

Предлагаемый геонавигационный модуль для системы MWD (инклинометрия в процессе бурения) позволяет рассматривать ее как систему LWD (каротаж в процессе бурения). Геонавигационный модуль ГНМ состоит из аппаратурно-програм­много и программно-методического модулей.

Предлагаемый аппаратурно-программный модуль обеспечивает измерение параметров разбуриваемых пород. Для этого используются все компоненты телесистемы и выполненный отдельным конструктивным модулем модуль гамма-каротажа, подключаемый к телесистеме. Возможна регистрация следующих параметров:

ГК – естественная гамма активность разбуриваемых пород;

КС – кажущееся удельное сопротивление разбуриваемых пород, определяемое по напряжению и току диполя электромагнитного канала связи;

ВК – измерение интегрального уровня продольных вибраций буровой колонны акселерометром инклинометрического датчика (виброкаротаж);

Кроме ГК, нет специально организованных зондов, все параметры получаются как производные.

Программно-методический модуль обеспечивает обработку результатов измерений аппаратурно-программного модуля и включает в себя программное обеспечение (программа «GEONAG») и портативный компьютер (Notebook) – может использоваться Notebook, входящий в комплект телесистемы с которой используется модуль, или отдельный.

Модуль гамма-каротажа выполнен на основе сцинтилляционного блока. На рисунке 3.6. приведена его структурная схема, на рисунке 3.7 показан общий вид модуля.

Сцинтилляционный счетчик состоит из фотоэлектронного умножителя, перед фотокатодом которого установлен сцинтиллятор; фотоэлектронный умножитель подключен к измерительной схеме с регистрирующим прибором на ее выходе.

Индикатором гамма–излучения является прозрачный кристалл йодистого натрия,

активированного таллием - NaJ(Tl), молекулы которого обладают свойством сцинтилляции – испускания фотонов света при воздействии гамма – квантов. Фотоны отмечаются фотоумножителем и вызывают поток электронов к аноду (ток).

Большим преимуществом сцинтиллятора является высокая эффективность счета (регистрируется до 50 – 60% гамма–квантов, проходящих через кристалл) по сравнению с другими типами счетчиков, эффективность которых 1 – 5%. Это позволяет уменьшить длину счетчиков с 90 до 10 см, улучшить вертикальное расчленение и обеспечить малую статическую флуктуацию.



Рис.3.6. Структурная схема модуля гамма-каротажа

1 – Кожух; 2 – Шасси; 3 – Сцинтиляционный блок; 4 – Амортизатор; 5 – Крышка



Рис. 3.7. Общий вид модуля гамма-каротажа.
Модуль гамма каротажа состоит из кожуха 1 (см. рис.3.7.), изготовленного из титанового сплава, внутри которого фиксировано, относительно кожуха, закреплены шасси 2 с электронными платами и сцинтилляционным блоком 3. Шасси установлено на резиновых амортизаторах 4.

Электрическая связь модуля гамма-каротажа с соединительной штангой осуществляется посредством электрических разъемов РСГС 10, которыми снабжены концевые части прибора. С тем чтобы исключить изменения ориентированного расположения деталей модуля гамма каротажа и соединительных штанг, имеются установочные и фиксирующие штыри, которые при сборке входят в соответствующие отверстия гибкой соединительной штанги.

При работе с телесистемой LWD используется программное обеспечение аналогичное используемому при работе с телесистемой MWD. Данное программное обеспечение помимо инклинометрических параметров обеспечивает приём, оцифровку, фильтрацию и дешифрацию геофизических параметров передаваемых телесистемой LWD. Им же осуществляется регистрация, расчёт КС и преобразование геофизической информации в соответствии с тарировочными данными. Вся технологическая и геофизическая информация построчно записывается в текстовый файл. При частоте передаваемого сигнала: 10 Гц строки записываются через 20 сек.;5 Гц строки записываются через 40 сек.; 2,5 Гц строки записываются через 100 сек.

На рисунке 3.9. представлена структурная схема забойной телеметрической системы LWD с добавлением блок-схемы структурных элементов, относящихся к геонавигационному модулю.




Рис.3.9. Структурная схема забойной телеметрической системы LWD
Основные технические данные


Наименование параметра




Диапазон измерений:




интенсивности естественного гамма- излучения (ГК), мкР/ч

0 - 100

кажущегося удельного сопротивления пород (КС, на диполе), Омм.

0 - 100

потенциала спонтанной поляризации (ПС, на диполе), В10

0 - 500

интегрального уровня вибраций (ВК), м/с2

0 - 100

механической скорости бурения (МК), м/ч

0 - 120

Допускаемая основная погрешность при измерении:



интенсивности естественного гамма- излучения, мкР/ч

 10 %

кажущегося удельного сопротивления пород, Омм.

10 %

потенциала спонтанной поляризации, В10

 10 %

интегрального уровня вибраций, м/с2

 10 %

механической скорости бурения, м/ч.

 5 %

амплитуды сигнала, В.

 5 %

фазового сдвига, с10

 5 %

Максимальная рабочая температура, С.

120

Максимальное гидростатическое давление, МПа

60

Габаритные размеры, мм.




диаметр модуля

42

длина модуля

600

Масса модуля, кг.

3


3.2.2. Результаты использования наддолотного модуля

Задачи скважинных измерений телесистемами можно разбить на три основные группы:

1) оперативный технологический контроль за режимом бурения скважин с целью его оптимизации;

2) контроль направления бурения скважин с целью управления процессом направленного бурения по заданной траектории;

3) литологическое расчленение геологического разреза скважины, исследование параметров пластов, не искаженных проникновением фильтрата промывочной жидкости в пласт, выделение пластов-коллекторов, прогнозирование зон аномальных пластовых давлений

На эффективность процесса разрушения породы (в данном случае на механическую скорость бурения или продолжительность бурения) влияет множество технологических и геологических факторов. Чтобы добиться более высокой эффективности разрушения, необходимо регулировать технологические параметры процесса бурения, а чтобы получить какую-либо геологическую информацию, необходимо учитывать влияние этих же параметров на скорость бурения. Возникает двойная необходимость регистрации технологических параметров – для оптимизации бурения и для решения геологических задач.



3.2.2.1. Назначение наддолотного модуля, устройство и работа модуля

Модуль (рис.3.10.) предназначен для измерения технологических и геофизических параметров непосредственно около долота, в процессе бурения гидравлическими забойными двигателями и передачи информации материнской телесистеме, с использованием короткого скоростного беспроводного электромагнитного канала связи.

Для оптимизации процесса бурения, как было показано выше, необходимо измерять следующие забойные параметры: частоту вращения вала турбобура, осевую нагрузку на долото, направление бурения ствола скважины, уровень вибраций и естественную гамма-активность.

Несмотря на разнообразие измерительных датчиков, позволяющих решать перечисленные задачи, требования получения достаточной точности измерений, обеспечивающей надежное управление технологическим процессом, эксплуатационная надежность и удобство в работе в условиях скважины являются основными при выборе тех или иных конструкций.





Рис.3.10. Общий вид наддолотного модуля.


Рис.3.11. Детали наддолотного модуля.
Информация, измеренная наддолотным модулем 6 (см. рисунок 3.12.), передается по короткому скоростному беспроводному электромагнитному каналу связи 5 на приемно-обрабатывающий блок 4 материнской телесистемы 3. Телесистема наряду с данными, измеренными ею самой, передает на поверхность по беспроводному электромагнитному каналу связи 2 также и данные, полученные наддолотным модулем, в виде дополнительных каналов. На поверхности информация принимается и обрабатывается наземным приемно-обрабатывающим комплексом 1, программное обеспечение которого модифицируется с учетом дополнительных каналов наддолотного модуля.


Рис.3.12. Структурная схема телесистемы с наддолотным модулем.


Рис.3.13. Структурная схема наддолотного модуля.


Рис.3.14. Компоновка наддолотного модуля в составе бурильной колонны.
3.2.2.2. Датчик дифференциального давления

Для регистрации данного параметра используют тензометрические датчики избыточного давления. Тензопреобразователи предназначены для пропорционального непрерывного преобразования давления в электрический выходной сигнал.

Принцип действия основан на использовании тензоэффекта в полупроводниках. Чувствительным элементом служит сапфировая мембрана с кремниевыми тензорезисторами. Сапфирная мембрана по всей плоскости жестко соединена с металлической мембраной, образуя с ней двухслойную мембрану. Двухслойная мембрана жестко закреплена в корпусе тензопреобразователя. Во внутреннюю полость корпуса подается измеряемое давление. Под действием измеряемого давления двухслойная мембрана деформируется, вызывая изменение сопротивления тензорезисторов, собранных в мостовую схему.

Измерение дифференциального давления требуется при турбинном бурении для контроля давления в трубах и затрубье и при измерении расхода бурового раствора методом переменного перепада давления с использованием сужающих устройств.



3.2.2.3 Датчик оборотов вала забойного двигателя

Датчик оборотов предназначен для непрерывного контроля частоты вращения вала турбобура в процессе бурения скважин.

При использовании беспроводного канала для измерения частоты вращения вала турбобура применяют бесконтактные преобразователи. Связь вала турбобура с чувствительным элементом датчика частоты вращения индуктивная или магнитная.

При использовании проводного или беспроводного канала в качестве датчиков частоты вращения вала турбобура широко применяют конструкции электромашин генераторов переменного тока.

Статор с обмотками закрепляется неподвижно, а ротор с постоянными полюсными магнитами соединяется с валом турбобура. Частота вращения долота определяется как N=nf/30, где f—частота вырабатываемого генератором тока; п—число пар полюсов.

Недостаток таких датчиков — механическое сочленение вала генератора с валом турбобура, а также относительная сложность конструкции генератора, что снижает надежность датчика при работе в условиях сильных вибраций.

Более перспективен датчик частоты вращения с бесконтактной связью элемента вращения с чувствительным элементом. Как правило, датчик работает следующим образом. На конце вала турбобура жестко закрепляется немагнитный стакан, в стенку которого заформовываются симметрично расположенные якоря. В стакан свободно вставляется монолитный стержень из резины, внутри которого размещается ферромагнитный сердечник с катушкой с герметичными выводами схемы измерений.

Более совершенным является датчик оборотов долота, основанный на следующем принципе. На вал турбобура напрессовывается немагнитный стакан с встроенным постоянным магнитом. Аппаратурный контейнер из немагнитного материала с герконом или магнитомодуляционным датчиком, располагаемый на расстоянии до 310-2 м, надежно срабатывает при прохождении магнита, обеспечивая формирование импульсов, частота следования которых прямо пропорциональна частоте вращения долота.

Наличие на скважинах указателей оборотов турбобура используемых в (НДМ) дает возможность бурильщикам непрерывно непосредственно корректировать режим турбинного бурения скважин, добиваясь при этом оптимальных нагрузок турбобуров, и соответственно, повышать технико-экономические показатели турбинного бурения.

По предварительным данным применение НДМ дает заметное увеличение механической скорости бурения и проходки на долото, что соответственно сокращает расход долот, талевого каната и времени, затрачиваемого на бурение скважин.

Для измерения частоты вращения вала турбобура используют бесконтактный преобразователь, состоящий из феррозонда и магнита, закрепленного на валу турбобура.

3.2.2.4 Датчик осевой нагрузки

Имея с забоя данные о частоте вращения долота и истинной осевой нагрузке на долото, можно поддерживать режим таким образом, чтобы обеспечивалась максимальная механическая скорость проходки, следить за износом долота, не допуская критических режимов его работы

В процессе бурения скважины осевая нагрузка на долото создается, в основном, весом нижней части колонны труб. Ее величина при бурении шарошечными долотами достигает 300—400 кН; в отдельных случаях требуются и большие нагрузки—до 500 кН.

Глубинный измеритель осевой нагрузки должен быть составным звеном компоновки бурильного инструмента, чтобы воспринимать усилия, передаваемые к долоту. Могут быть использованы принципы измерения осевой нагрузки с помощью упругого элемента или с применением гидравлического преобразователя.

В первом случае упругий элемент воспринимает всю (или часть) осевую нагрузку. Деформация элемента, пропорциональная усилию, преобразуется в электрическую величину посредством (тензодатчиков, индуктивных, магнитоупругих или емкостных) преобразователей малых перемещений. В магнитоупругих датчиках используется явление изменения магнитной проницаемости ферромагнитного материала при механической деформации. В гидравлическом преобразователе с помощью системы поршень—цилиндр измеряемое усилие трансформируется в давление жидкости, которое, в свою очередь, измеряется манометрическим датчиком. Применение гидравлических преобразователей связано с нарушением жесткости низа колонны труб в месте установки преобразователя, что не всегда допустимо. Для измерителя осевой нагрузки любого типа большое значение имеет место его установки в колонне труб. При установке датчика непосредственно у долота (между долотом и валом шпинделя) будет измеряться истинная нагрузка, передаваемая на долото. Однако в этом случае усложняется связь датчика с системой передачи сигналов, поэтому для измерения осевой нагрузки чувствительные элементы устанавливают над электробуром или турбобуром (в зависимости от способа бурения). В общем случае на измерительное устройство, установленное в колонне труб, кроме осевой нагрузки действуют усилия от вращающего момента и изгибающие усилия. В связи с этим по конструктивному исполнению датчики осевой нагрузки можно подразделить на две категории: датчики с механическим разделением осевой нагрузки, действующей на упругий элемент от двух других усилий, и датчики, у которых упругий элемент воспринимает все три усилия. Во втором случае упрощается конструкция датчика, что очень важно для глубинной аппаратуры, и поэтому данный вариант измерителя был принят для практического осуществления.

Датчик осевой нагрузки (рис.3.15) имеет упругий элемент 2 с присоединительными резьбами на концах и с утонченной средней частью lб, на торцовых поверхностях которой крепятся измерители перемещения 1, 4.

В рассматриваемом датчике применены индуктивные преобразователи перемещения. Магнитопровод измерителя с обмотками крепится на кронштейне 5 к верхнему торцу базового участка, а сердечник датчика—к нижнему торцу. Кронштейн изготовлен из того же материала, что и упругий элемент; тем самым достигается компенсация погрешности при температурных деформациях элемента. Упругая деформация элемента приводит к изменению зазора магнитной цепи датчика. Чтобы исключить влияние изгибающих усилий на измерение осевой нагрузки, устанавливают три одинаковых датчика, разнесенных по окружности на 2/3 рад. В этом случае при деформации изгиба суммарный зазор трех датчиков не изменяется. Для защиты преобразователей перемещения от механических повреждений применяется защитный стакан 6. Полость между стаканом и упругим элементом заполнена маслом, на которое передается давление промывочной жидкости через лубрикатор 8, состоящий из цилиндра, поршня и пружины. Стакан уплотняется на упругом элементе с помощью резиновых колец 3. Соединительные провода от преобразователей перемещения выводятся через канал 7 и через уплотняющие вводы подсоединяются к контейнеру с телеметрической аппаратурой. Кабель электробура 9 проходит свободно в центральном канале упругого элемента. На концы упругого элемента навинчиваются переводники, посредством которых он соединяется с бурильной колонной.

Для получения компактных размеров датчика при достаточной его чувствительности упругий элемент выполняют из дюралюминиевого сплава Д16Т, подвергнутого термообработке. Модуль упругости этого металла примерно в 3 раза меньше, чем у стали (Е=7,11010 Н/м2). При базовом размере 0,15 м, наружном диаметре 0,13 м и толщине стенки 0,015 м величина деформации составляет 25010-6 м при осевой нагрузке 500 кН, при этом характеристика элемента линейна и, как показали многократные испытания, стабильна в течение длительного времени работы. Гистерезис не превышает 2 %. Наружный диаметр корпуса датчика равен 0,185 м, а его длина примерно 0,9 м. Максимальное допустимое усилие на элемент составляет 1500 кН.

В случае изготовления упругого элемента из стали с той же чувствительностью необходимо примерно в 3 раза увеличить базовые расстояния или применить датчик с большей чувствительностью.

Многолетний опыт применения в бурении различных по своей физической основе преобразователей для контроля и измерения забойных технологических параметров (обороты долота, осевая нагрузка, температура, расход и др.), исследования позволяют считать, что современная элементная база, возможность размещения в скважинном приборе цифровой и микропроцессорной техники дают возможность построить по-новому измерения технологических параметров.



3.2.2.5. Датчик вибрации.

Исключительный интерес представляет измерение вибраций бурового инструмента в процессе бурения. Частотный и амплитудный спектр вибрационных колебаний характеризует упругие свойства горных пород и, в свою очередь, несет информацию о литологическом составе разбуриваемого пласта.

Регистрируя сигнал от вибродатчика продольных колебаний, установленного вблизи долота, и, исследуя частотный спектр сигнала при бурении в различных блоках горного массива, можно заметить основную гармонику, равную трехкратной частоте вращения долота (по количеству шарошек). С увеличением твердости разбуриваемых пород растет амплитуда сигнала вибрации, частотный спектр колебаний достаточно хорошо дифференцируется и коррелируется с данными акустического каротажа, надежно дифференцируя разрез по буримости.

Учитывая то, что одинаковая буримость горных пород характеризует определенную горную породу, то достаточно передавать на дневную поверхность индекс буримости от 1 до 10.

Высокая корреляция данных виброкаротажа с данными акустического каротажа позволяет использовать его в качестве важного геофизического параметра для детального расчленения геологического разреза, его прогнозирования. Тесная связь параметра вибрации с результатами акустического каротажа дает возможность получать информацию о прочностных свойствах разбуриваемых пород и использовать эти данные для технологического контроля процесса бурения.

На уровне количественных свойств и отношений для бурящейся скважины можно указать конечное множество переменных, практически полно описывающих процесс разрушения горных пород. В работе приведено общее уравнение для расчета механической скорости бурения:




где Кб–коэффициент буримости, характеризующий петрофизическую характеристику горной породы (учитывает прогнозные и фильтрационные свойства);

G – нагрузка на долото;

Sк – площадь зубьев, находящихся в контакте с горной породой;

n – частота вращения долота;

Q – расход промывочной жидкости;

 - плотность промывочной жидкости;

Sн – площадь сечений промывочных отверстий насадок;

 - вязкость промывочной жидкости;

d – диаметр бурильных труб;

D – диаметр скважины;

Рр – расчетное дифференциальное давление;

а, b, c, e, f – коэффициенты модели.

Изучая процесс разрушения горных пород, приводят эмпирическую формулу для механической скорости бурения Vм:

Vм=АnG,

где А – коэффициент пропорциональности (буримости);

n – частота вращения долота;

G – нагрузка на долото;

,  - постоянные для данного типа породы коэффициенты.

Установлены тесные корреляционные связи между буримостью горных пород и их геофизическими параметрами по данным измерений электрических, акустических и плотностных характеристик. Это дает возможность, исследуя механический процесс разрушения горных пород через вибрационные характеристики, определять механические свойства горных пород и выбрать оптимальный режим работы долота.

С целью практической реализации определения скорости вращения долота через измерение на забое вибраций бурового инструмента были выполнены измерения на модели бурового стенда. Акселерометр типа АДXL 50 АН жестко закрепляли на шасси скважинного прибора, сигналы с датчика после линейного усилителя (коэффициент усиления–8) подавались на вход АЦП и по шине RS 232 на порт Notebook IBM. Спектр энергий вычисляли по программе преобразований Фурье. Сравнивая скорость вращения бура с данными спектрограмм, надежно выделялись максимумы энергии этих частот, соответствующие определяемым скоростям вращения долота.

Таким образом, используя в скважинном приборе вычисления спектров вибросигнала с помощью сигнального процессора фирмы Analog Device, по данным измерений вибраций можно определить скорость вращения долота

3.2.2.7. Гамма-метод

В гамма-методе изучают естественную радиоактивность горных пород по данным измерений интенсивности естественного гамма-излучения вдоль ствола скважины.

Радиоактивность осадочных горных пород обусловлена присутствием в них радиоактивных элементов – урана, тория, актинии, продуктов их распада, а также изотопа калия.

Содержание радиоактивных элементов в породах измеряется в граммах радия-эквивалента на 1 г породы (гRa = экв/г). На практике пользуются меньшей единицей микромикрограммом радия-эквивалента на 1 г породы: 1 мкмкг.

Модуль гамма каротажа выполнен на основе сцинциляционного блока. Индикатором гамма – излучения является прозрачный кристалл, молекулы которого обладают свойством сцинтилляции – испускания фотонов света при воздействии гамма – квантов. Фотоны отмечаются фото умножителем и вызывают поток электронов к аноду (ток).

Большим преимуществом сцинтиллятора является высокая эффективность счета (регистрируется до 50 – 60% гамма – квантов, проходящих через кристалл) по сравнению с другими типами счетчиков, эффективность которых 1 – 5%. Это позволяет уменьшить длину счетчиков с 90 до 10 см, улучшить вертикальное расчленение и обеспечить малую статическую флуктуацию.

На рис.3.18 приведена диаграмма радиоактивного каротажа, полученная в процессе бурения, и диаграмма стандартного электрического каротажа КС (ПС) на кабеле, снятая позднее в той же скважине. Степень корреляции кривых непрерывного гамма-каротажа и ПС высокая.



Рис.3.18.

Так как гамма-каротаж в процессе бурения проводится со скоростью бурения (т.е. при очень медленном перемещении прибора по стволу скважины) и прибор сравнительно долго находится против исследуемых пластов, статистические вариации оказываются минимальными. Отсюда хорошая детализация разреза и сопоставляемость с кривой ПС.

Регистрация естественной радиоактивности горных пород, окружающих скважину горных пород в процессе бурения обеспечивают литологическое расчленение геологического разреза. Среди осадочных пород наиболее радиоактивными являются глины и калийные соли. Содержание радиоактивных элементов в глинах достигает 30 мкмкг Ra-экв/г и больше, причем более радиоактивными являются тонкодисперсные темно-окрашенные битуминозные глины морского происхождения. Поэтому на диаграммах максимальные показания соответствуют глинам и калийным солям.

Радиоактивность песков, песчаников, известняков, доломитов меньше, чем глин, и не превышает 8 мкмкг Ra-экв/г. Для этих пород установлена достаточно тесная прямая зависимость радиоактивности от содержания глинистого материала в породе, используемая на практике при оценке глинистости пород-коллекторов по данным гамма-метода. Характеризуются промежуточными показаниями.

Наименьшую радиоактивность, имеют породы гидрохимического комплекса: гипсы, ангидриты, каменная соль, за исключением калийной соли.

3. Концепция создания дополнительных геофизических модулей для контроля технологических параметров и решения геологических задач в процессе бурения.

3.2.3.Модуль индукционного каротажа

Индукционный каротаж основан на изучении распределения электромагнитного поля в пространстве, окружающем зонд, в зависимости от удельной электропроводности горных пород. В отличие от других методов электрического каротажа, индукционный каротаж бесконтактный, т.е. посредством индукционного зонда измеряют проводимость горных пород, не посылая в них через электроды электрический ток. Таким образом, предоставляется возможность исследовать сухие скважины и скважины, заполненные промывочной жидкостью, приготовленные на нефтяной основе. Кроме того, индукционные зонды имеют лучшую разрешающую способность по мощности и больший радиус исследования изучаемой среды.

В сомом элементарном виде индукционный зонд (рис.3.19) состоит из двух катушек - генераторной и измерительной, укрепленных на изолированном немагнитном стержне на некотором расстоянии L друг от друга, называемом размером зонда. Генераторная катушка питается постоянным по величине переменным током высокой частоты (20-60 кГц.), создающим переменное магнитное поле - прямое и первичное. В результате в породах, окружающих зонд, индуцируются вихревые токи, токовые линии которых в однородной среде представляют собой окружности с центром по оси скважины. Вихревые токи создают, в свою очередь, вторичное переменное магнитное поле той же частоты.

а-схема зонда, б-схема взаимного расположения узлов в скважинном приборе и сочетание элементарного тороидального кольца, 1-усилитель, 2-измерительная катушка, 3-тороидальное кольцо с направлением в нём токовых линий, 4-генераторная катушка, 5-

генератор, к.ср. - значение кажущегося сопротивления в средней части пласта, к.опт-среднее значение кажущегося сопротивления в интервале пласта равном разности h-10 или h-OA.

Первичное и вторичное магнитные поля индуцируют в измерительной катушке ЭДС Еп. В индуцируемую ЭДС Еп входит как составляющая ЭДС Е1, созданная прямым полем генераторной катушки и не связанная с электрическими свойствами горных пород. Поэтому в цепь приёмной катушки с помощью дополнительной компенсационной катушки вводят компенсационную ЭДС Ек, равную Е1 и противоположную ей по фазе. Полезная часть сигнала, т.е. ЭДС Е2 , индуцируется вторичным магнитным полем, подаётся на усилитель, преобразуется, и передаётся на поверхность. Е2 является активной составляющей ЭДС, индуцируемой вторичным магнитным полем, и приблизительно пропорциональна электропроводности окружающей среды. В результате в процессе перемещения зонда регистрируется диаграмма изменения электропроводности среды по разрезу скважины. Точка записи зонда - середина расстояния между центрами генераторной и приёмной катушек. Единицей измерения электропроводности σ пород является величина, обратная Ом*м, -сименс на метр (См/м).На практике используют мСм/м.

Рассмотрим связь между величиной измеряемого сигнала и удельной электропроводностью среды σп, предпологая её однородной. Для этого разобьём системой цилиндров все увеличивающихся радиусов и плоскостями, перпендикулярными к оси зонда, все пространство на ряд элементарных тороидальных колец, центры которых располагаются на оси зонда, и рассмотрим элементарное кольцо радиусом r с расстоянием от центра кольца до средней точки зонда, равным z (рис.3.19). Переменное магнитное поле, создаваемое генераторной катушкой, индуцирует в элементарном тороидальном кольце ЭДС, под действием которой по кольцу будут циркулировать переменные токи, создающие в нём вторичное магнитное поле.

Вторичное магнитное поле элементарного кольца, в свою очередь, индуцирует в измерительной катушке ЭДС



Здесь σn-электропроводность среды;



- коэффициент, называемый пространственным ( геометрическим ) фактором элементарного кольца, где Кг и Ки – расстояния от элементарного кольца до центров генераторной и измерительной катушек, L – размер зонда;



-коэффициент зонда, зависящий от параметров установки, где f – частота тока, питающего генераторную катушку; Iо – амплитуда силы тока; μ – магнитная проницаемость изучаемой среды – в случае однородной немагнитной среды μ = I; Sи и Sг – площади витков измерительной и генераторной катушек; nи и nг – количество витков этих катушек.

Суммарная ЭДС в измерительной катушке составляет сумму единичных сигналов от элементарных колец, на которые разбивается всё пространство:

где Ео - амплитудное значение индуцируемой ЭДС, которое замеряется, Ео=Кинд*σ*Σ*Σg. Знак минус свидетельствует о том, что индуцируемая в измерительной катушке ЭДС находится в противофазе с питающим генераторную катушку током и является по отношению к нему активной составляющей. Существует строгое доказательство, на основании которого суммарный геометрический фактор однородной изотропной среды



,

Откуда,


Практически при индукционном каротаже измеряют величину Еинд, пропорциональную амплитудному значению ЭДС Ео и



При изучении неоднородных сред определяют кажущуюся удельную электропроводность σк, т.е. электропроводность такой фиктивной однородной среды, в которой при определённых заданных параметрах зонда создаётся активная составляющая ЭДС, равная ЭДС, измеряемой тем же зондом при исследовании в данной неоднородной среде:



Где σк ≠ σп вследствие искажающего влияния скважины, зоны проникновения, вмещающих пород и других факторов. Чем больше неоднородность среды, тем больше отличается σк от σп.

В соответствии с приближенной теорией для двухкатушечного индукционного зонда все среды включены в цепь кольцевых токов параллельно и регистрируемая ЭДС Еи представляет собой сумму сигналов, приходящих от каждого параллельно включенного участка среды отдельно. В этом случае

Где σр, σзп, σп, σвм – удельные электропроводности раствора, зоны проникновения, неизменной части пласта и вмещающих пород соответственно; Gр, Gзп, Gп, Gвм – геометрические факторы скважины, зоны проникновения, неизменной части пласта и вмещающих пород.

В зависимости от соотношения величин G и σ каждой зоны регистрируемая кажущаяся электропроводность σк будет отличаться от истинной электропроводности породы. С целью получения значений σк, более точно отражающих σп, в цепь двух основных катушек зонда подключают несколько дополнительных катушек – фокусирующих, которые могут быть подключены как в генераторную, так и в приёмную цепи. Число их в зависимости от типа применяемого зонда колеблется от 1 до 4. Зонд индукционного метода обычно обозначают шифром: первая цифра соответствует числу катушек, буква Ф означает, что зонд с фокусирующими катушками; далее обозначается в метрах длина зонда L.

Фокусирующие катушки, введеные в схему индукционного зонда, создают сигналы соответствующих знаков, ослабляя до минимума влияние скважины и зоны проникновения фильтрата глинистого раствора в пласт на измеряемую величину σк.

В настоящее время используется несколько типов аппаратуры низкочастотного индукционного каротажа: ЭЗМ, ПИК – 1М, используемых электронных схем.

Кривые σк индукционного каротажа против пластов ограниченной мощности симметричны относительно середины пласта (рис.3.20) . Границы пласта определяют по середине аномалии, где её ширина соответствует истинной мощности пласта h при h ≥ 4 м. Если h < 4 м, то ширина аномалии дает фиктивную мощность hф < h.





Рис.3.20

Шкала регистрируемой диаграммы представлена обычно в двух масштабах – кажущейся электропроводности σк и кажущегося сопротивления ρк. Кривая кажущейся электропроводности имеет линейную шкалу, а кажущегося сопротивления – гиперболическую. Поэтому диаграмма позволяет хорошо расчленить разрез в области относительно низких сопротивлений (повышенных электропроводностей).

За отсчитываемые значения σк (ρк) принимают экстремальные значения против пласта. Они близки к удельной электропроводности пласта и могут быть использованы вместо неё в пластах достаточной мощности при наличии скважины с пресным глинистым раствором (ρр > 1,5 Ом* м), отсутствии проникновения в пласт или наличии неглубокого повышающего проникновения. В остальных случаях при определении σп в исходные данные необходимо вносить соответствующие поправки на влияние скважины, ограниченную мощность пласта, явление скин-эффекта и наличие зоны проникновения фильтрата глинистого раствора (Явление скин-эффекта связано с взаимодействием вихревых токов в породах и выражается в нарушении прямой пропорциональности между регистрируемым активным сигналом и электропроводностью среды при её высокой проводимости (σп > 300 мСм/м.). Для этих целей используют специальные палетки.

Индукционные зонды среднего размера (0,75-1 м.) имеют радиус исследования, почти в 4 раза превышающий радиус обычных зондов каротажа КС, что позволяет более точно определять истинное сопротивление пород, обычно в диапазоне до 50 Ом*м.



3.2.4.Электромагнитный каротаж в процессе бурения скважин.

3.2.4.1. Физико-математический анализ электромагнитного каротажа.

При бурении нефтяных или газовых скважин требуется оперативная геофизическая информация о геологических свойствах разреза для оптимизации ТСС, особенно горизонтальных, с целью вскрытия наиболее продуктивных нефтяных и газовых пластов.

При каротаже в процессе бурения предпочитают источники поля электрического типа, естественным образом вписывающихся в конструкцию КНБК.

Для определения электрофизических параметров разбуриваемых пластов разработан метод, основанный на использовании конструктивных элементов ЗТС в качестве электродов-зондов ЭМК. На рис.3.21 изображён приборный контейнер в зоне разделителя бурильных труб: 1 и 2 –бурильные трубы, 3 – металлический кронштейн, 4-диэлектричес-кая вставка-разделитель, 5-диэлектрический корпус, 6-стенки скважины, 7-направленние движения бурового раствора.

В процессе каротажа измеряются комплексные напряжения U1(ω1) и U2(ω2) с частотами ω1 и ω2, приложенные к электрическому разделителю и комплексные токи I1(ω1, ω2) и I2(ω1, ω2) , протекающие в измерительной цепи между электрическим разделителем и корпусной точкой прибора, металлическим кронштейном приборного контейнера и корпусной точкой прибора. Об электрофизических параметрах разбуриваемого пласта судят по комплексным проводимостям, характеризующим разбуриваемый пласт и буровой раствор внутри бурильной трубы в зоне расположения приборного контейнера ЗТС.

Калибровка измерительной системы сводится к измерению токов I1, I2 и напряжений U1,U2 при заданных тестовых воздействиях на входе системы.

Принцип действия ЭМК изображён на схеме замещения модуля (рис.3.22), где 1 и 2 – бурильные трубы, электрически изолированные друг от друга электрическим разделителем, 3- металлический кронштейн, д.т.1 и д.т.2- датчики тока; Y1 и Y2 –комплексные проводимости между бурильными трубами 2,1 и кронштейном 3; Y3 – комплексная проводимость между трубами 1 и 2, обусловленная электрофизическими параметрами разбуриваемого пласта и бурового раствора; Y10, Y20, Y30 – комплексные проводимости, обусловленные паразитными емкостными и гальваническими связями между электродами.



Рис.3.22.

Система функционирует следующим образом.

Переменное двухчастотное электрическое поле возбуждается в зоне контроля напряжениями U1(ω1) и U2(ω2), приложенными к электрическому разделителю, т. е. между бурильными трубами 2 и 1 и корпусной точкой прибора(┴).

Сигналы реакции контролируемой среды определяются комплексными токами, измеряемыми датчиками тока 1 и 2. Измеряются следующие величины:



где U1, U2 и I1, I2- истинные напряжения и токи в измерительной цепи; Uu1, Uu2, Iu1, Iu2-измеренные напряжения и токи; К1(ω1), К2(ω2), К3(ω1), К5(ω2), К6(ω2), К(ω1)- комплексные коэффициенты передачи измеренных тока и напряжения. По измеренным токам и напряжениям определяют комплексные проводимости Yu1, Yu2,Yu3, связанные с их истинными значениями соотношениями


Из измеренных комплексных проводимостей Yu1, Yu2,Yu3 выделяют информативные составляющие Y1, Y2,Y3, проводится калибровка измерительной системы. Прибор отключается от электродов 1,2 и 3, к соответствующим зажимам подключается калиброванная нагрузка: Y3k1, Y1k1, Y2k1- между зажимами 1-2, 1-3, 2-3(см.рис.2), затем-Y3k1, Y1k1, Y2k1. При этих калиброванных нагрузках измеряются комплексные токи I1, I2 и напряжения U1,U2, затем определяются комплексные проводимости

Аналогично определяют проводимости Yu3k1(ω1), Yu1k2(ω1), Yu2k2(ω2), Yu2k2(ω2) при калиброванной нагрузке Y3k2,Y3k2, Y2k2. По результатам калибровки определяют неинформативные составляющие Y10, Y20, Y30 и комплексные коэффициенты передачи К14(ω1), К13(ω1), К25(ω2), К26(ω2).

Информативные составляющие комплексных проводимостей определяют по результатам измерения и калибровки.




Полученные комплексные проводимости характеризуют электрофизические параметры разбуриваемого пласта горных пород и бурового раствора.

Модуль ЭМК выполняет контрольно-измерительные операции в процессе бурения.


  1. Возбуждение переменного двухчастотного электрического поля в зоне контроля с использованием конструкции электрического разделителя и приборного контейнера ЗТС в качестве электродов-зондов.

  2. Измерение комплексных напряжений U1(ω1) и U2(ω2), приложенных к разделителю, и комплексных токов I1, I2, протекающих в измерительной цепи между разделителем и корпусной точкой прибора, металлическим кронштейном и корпусной точкой прибора.

  3. Определение комплексных проводимостей, характеризующих разбуриваемые пласты и буровой раствор внутри бурильной трубы в зоне расположения приборного контейнера.

  4. Калибровка измерительной системы каротажа, сводящаяся к измерению токов I1, I2 и напряжений U1(ω1) и U2(ω2) при заданных тестовых воздействиях на входе системы.

  5. Определение скорректированных комплексных проводимостей, характеризующих электрофизические параметры разбуриваемого пласта и бурового раствора внутри бурильной трубы с учётом помех паразитных проводимостей и приборных погрешностей системы каротажа.

  6. Определение изменений электрофизических параметров разбуриваемого пласта в зоне расположения КНБК по отношению к скорректированным комплексным проводимостям, характеризующим пласт и буровой раствор.

  7. Выбор рабочих частот ω1 и ω2 зондирующего электрического поля в соответствии с требуемой радиальной дальностью контроля электрофизических свойств околоскважинного пространства.

3.2.4.2.Функциональная схема модуля электромагнитного каротажа.

Функциональная схема модуля ЭМК изображена на рис.3.24: 1, 2, 3 –электронные ключи, 4 –первый датчик тока (д.т.1) , 5 – второй датчик тока (д.т.2), 6 – первый преобразователь напряжения , 7 – второй преобразователь напряжения, 8 – порт управления коммутацией

(ПУК) , 9 - двухканальный цифро-аналоговый преобразователь (ЦАП), 10 – цифровой сигнальный процессор, 11 – многоканальный аналого-цифровой преобразователь (АЦП),

12 – устройство ввода-вывода (УВВ), 13 – память команд, 14 – память хранения результатов измерений.

Модуль работает следующим образом. Сигнал синхронизации поступает с передатчика

электромагнитного канала связи ЗТС на УВВ процессора, через ПУК сигналы подаются на электронные ключи 1, 2 и 3. Ключ 1 размыкается, отключая выходную цепь передатчика ЗТС от электрического разделителя, ключ 2 размыкается, преобразователь напряжения 7 расшунтируется и с него на разделитель подается зондирующий сигнал – напряжение U2(ω2). Ключ 3 замыкается, подключая преобразователь напряжения 7 к измерительной цепи. С преобразователей напряжений 7 и 6 через многоканальный АЦП 11 сигналы поступают в процессор 10, где они измеряются и обрабатываются. После замыкания ключа 3 и подачи зондирующего сигнала на электрический разделитель через датчики тока 4 и 5 (д.т.1 и д.т.2) протекают токи, замыкающиеся по следующим контурам.



Два токовых контура с преобразователем напряжения 6 – U1(ω1). Для датчика тока 4:

корпусная точка прибора (КТП)→ датчик 4 → ключ 3→блок 6→проводимости (Y1 – Y10) → КТП.

Для датчика тока 5: датчик 5 →ключ 3 →блок 6 → проводимости (Y3 – Y30) → блок 7 → датчик 5.

Во втором случае токами проводимости (Y1 – Y10) и (Y2 – Y20) пренебрегают из-за малых внутренних сопротивлений преобразователей.



Два токовых контура с преобразователем напряжения 7 – U2(ω2). Для датчика тока 4:

КТП → датчик 4 →датчик 5 →блок 7→ проводимости (Y2 – Y20) →КТП.

Для датчика тока 5: датчик 5 → ключ 3 → блок 6 → проводимости (Y3 – Y30) → , блок 7 → датчик 5.

Во втором случае током проводимости (Y1 – Y10) пренебрегают из-за малого внутреннего сопротивления преобразователя 6.

Преобразователи 6 и 7 выдают напряжения U1(ω1) и U2(ω2) с частотами ω1 и ω2, они работают одновременно в непрерывном режиме. Синусоидальные напряжения U1(ω1) и U2(ω2) формируются в цифровую форму в сигнальном процессоре 10 и через двухканальный ЦАП 9 подаются на блоки 6 и 7. Сигналы, пропорциональные токам с датчиков 4 и 5, после преобразования в многоканальном АЦП 11 в цифровой форме поступают в процессор 10. В нём фильтруются и измеряются токи I1, I2 с частотами ω1 и ω2. С преобразователей напряжения 6 и 7 напряжения U1(ω1) и U2(ω2) через АЦП 11 подаются в процессор 10, где измеряются и обрабатываются. Через УВВ 12 они поступают в передающее устройство ЗТС. В памяти команд 13 содержатся алгоритмы измерения и обработки сигналов. Память 14 хранит результаты, не передающиеся в наземную часть из-за ограниченной пропускной способности канала связи ЗТС.

Модуль ЭМК имеет преимущества с другими известными средствами каротажа в процессе бурения:



  1. Использование конструктивных элементов передающей части ЗТС в качестве электродов-зондов ЭМК.

  2. Одновременный каротаж разбуриваемого пласта и бурового раствора на двух рабочих частотах зондирующего электрического поля по двум параметрам: диэлектрической проницаемости среды и удельной электрической проводимости, что повышает надёжность и информативность каротажа.

  3. Выделение наиболее информативных составляющих измеряемых сигналов электрофизических параметров околоскважинного пространства и бурового раствора.

  4. Обработка информации бортовым компьютером ЗТС в реальном масштабе времени и передача в наземную часть ЗТС по беспроводному ЭМКС.

  5. Совместная работа системы каротажа с электромагнитным каналом связи в режиме разделения по времени.

  6. Простота изготовления модуля ЭМК на современной элементарной базе и микропроцессорной технике.

Модуль ЭМК изготовлен на двух платах, на одной размещена аналоговая часть, на другой - цифровая. Аналоговая часть геофизического модуля ЭМК состоит из усилителей мощности ортогональных сигналов возбуждения; нормирующих усилителей тока, выполненных на резисторах, конденсаторах и трансформаторах тока; мультиплексора измеряемых сигналов; коммутационных транзисторов; вспомогательных транзисторов; генератора управляющих напряжений; фазового выпрямителя.

3.2.4.3.Структура модуля электромагнитного каротажа.

Блок обработки цифровой информации модуля ЭМК изготовлен на основе шестнадцатиразрядного сигнального процессора типа ТМS320C50 (с фиксированной точкой). Производительность процессора 30 МIPS (30 миллионов операций в 1 с.). Оперативная память программ 9 килослов (9 кслов) =18 кбайт. Оперативная память данных 1 кслов=2 кбайт. Энергозависимая память загрузки программ 64 кбайт.

Управляющая программа модуля – коммуникационный монитор проводит обмен данными с бортовым компьютером, чтение и загрузку (модификацию) всех типов памяти и систем, перепрограммирование процессора. Объём памяти, занимаемый управляющей программой 6 кбайт.



Программное обеспечение измерительного процесса формирует зондирующие сигналы в диапазоне частот от 1…5 до 100 кГц (с используемым типом АЦП). С другим типом АЦП возможно расширение диапазона рабочих частот модуля до 1 МГц. Выполняется многочастотный режим работы модуля на заданной сетке частот. Программа обеспечивает работу измерительного модуля: приём измерительных сигналов (оцифровку) – аналого-цифровое преобразование, первичную обработку сигналов – усреднение, фильтрацию, измерение комплексных сигналов (амплитуд и фаз), вычисление комплексных проводимостей, сжатие и передачу данных в центральный бортовой компьютер ЗТС. Объём памяти, занимаемый программой 8 кбайт.

3.2.4.4. Физическое моделирование работы модуля ЭМК.

Физическая модель скважины (рис.3.25) разработан для исследования влияния околоскважинного пространства и бурового раствора как внутри трубы, так и между трубой и стенкой скважины, прохождение зон водонефтяного (ВНК) и газонефтяного (ГНК) контактов, продуктивного слоя, идентификации и дифференциации различных физических сред.

Концентрически расположенные области физической модели заполнены следующим образом: зона 0 – буровой раствор на водяной основе, зона 1 – буровой раствор, зона 2 – исследуемая среда.

Заведомое снижение чувствительности каротажа модели объясняется диэлектрической перегородкой между 1 и 2 зонами. Слой диэлектрика оказывает значительное экранирующее действие и снижает чувствительность к параметрам исследуемой среды в зоне 2. Моделирование проведено в частотном диапазоне 100Гц … 1 МГц, выбранном по опыту разработки компьютерного анализатора газонефтяных потоков с использованием электроёмкостной компьютерной томографии.

Диапазон измерения параметров ε и ρ газоводонефтяных смесей заведомо перекрывает диапазон измерения аналогичных параметров геофизических средств при каротаже. Для указанных смесей величины ε изменяются от 1 (газ) до 81..82 (вода); ρ – от 0,2…0,4 Ом*м (вода) до значений, соответствующих нефти и газу.

В экспериментальных исследованиях задействован разработанный модуль ЭМК со стандартными измерительными приборами – измерителями импедансов типа Е7-14,

Е7-12. Исследована частотная дисперсия ε и ρ различных физических сред.




Каталог: student -> app
student -> Конспект первых лекций по дисциплине " основы автоматизированного схемотехнического проектирования радиоэлектронных устройств "
app -> Методики и технологии дистанционного зондирования Земли с целью оценки параметров тектонических процессов
student -> Темы дипломных проектов, предложенные исполнительными органами государственной власти Санкт-Петербурга (иогв), на 2016/2017 учебный год
student -> Памятка первокурснику санкт-Петербург
student -> Рабочая программа Направление подготовки 020700 Геология Магистерская программа 020700. 68. 05
student -> Службы и федеральные агентства, подведомственные
student -> 1. Влияние природно-климатического, геополитического и религиозного факторов на российский исторический процесс
student -> Профиль: Архитектурное проектирование
app -> Реферат преобразование Хартли


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал