Конспект лекций по курсу «тос: методы и средства цос»



страница1/83
Дата12.09.2017
Размер9,79 Mb.
  1   2   3   4   5   6   7   8   9   ...   83
Конспект лекций по курсу

«ТОС: МЕТОДЫ И СРЕДСТВА ЦОС»

Лектор: доцент В.Н. Решетов.

Лекции 1

Преобразование Фурье используется во многих областях науки — в физике, теории чисел, комбинаторике, обработке сигналов, теории вероятности, статистике, криптографии, акустике, океанологии, оптике, геометрии, и многих других. (В обработке сигналов и связанных областях преобразование Фурье обычно рассматривается как декомпозиция сигнала на частоты и амплитуды.) Богатые возможности применения основываются на нескольких полезных свойствах преобразования:

Преобразования являются линейными операторами и, с соответствующей нормализацией, также являются унитарными (свойство, известное как теорема Парсеваля или, в более общем случае как теорема Планшереля, или в наиболее общем как дуализм Понтрягина).

Преобразования обратимы, причем обратное преобразование имеет практически такую же форму, как и прямое преобразование.

Синусоидальные базисные функции являются собственными функциями дифференцирования, что означает, что данное представление превращает линейные дифференциальные уравнения с постоянными коэффициентами в обычные алгебраические. (Например, в линейной стационарной системе частота — консервативная величина, поэтому поведение на каждой частоте может решаться независимо.)

По теореме о свёртке, преобразование Фурье превращает сложную операцию свертки в простое умножение, что означает, что они обеспечивают эффективный способ вычисления основанных на свёртке операций, таких как умножение многочленов и умножение больших чисел.

Дискретная версия преобразования Фурье может быстро рассчитываться на компьютерах, используя алгоритм быстрого преобразования Фурье (БПФ, англ. FFT).

Разновидности преобразования Фурье

Непрерывное преобразование Фурье

Наиболее часто термин «преобразование Фурье» используют для обозначения непрерывного преобразования Фурье, представляющего любую квадратично-интегрируемую функцию f(t) как сумму (интеграл Фурье) комплексных показательных функций с угловыми частотами ω и комплексными амплитудами . Преобразование имеет несколько форм, отличающихся постоянными коэффициентами.



,

,

,

где ω = 2πν.

В разных областях науки и техники могут преобладать различные формы (поэтому иногда надо уточнять определение).

См. непрерывное преобразование Фурье для дополнительной информации, включая таблицу преобразований, обсуждение свойств преобразования и разнообразные соглашения. Обобщенным случаем такого преобразования является дробное преобразование Фурье, посредством которого преобразование можно возвести в любую вещественную «степень».

Ряды Фурье

Непрерывное преобразование само фактически является обобщением более ранней идеи рядов Фурье, которые определены для периодических функций или функций, существующих на ограниченной области f(x) (с периодом 2π), и представляют эти функции как ряды синусоид:



,

где Fn — комплексная амплитуда. Или, для вещественнo-значных функций, ряд Фурье часто записывается как:



,

где an и bn — (действительные) амплитуды ряда Фурье.

Дискретное преобразование Фурье

Для использования в компьютерах, как для научных расчетов, так и для цифровой обработки сигналов, необходимо иметь функции xk, которые определены на дискретном множестве точек вместо непрерывной области, снова периодическом или ограниченном. В этом случае используется дискретное преобразование Фурье (DFT), которое представляет xk как сумму синусоид:



,

где fj — амплитуды Фурье. Хотя непосредственное применение этой формулы требует операций, этот расчет может быть сделан за операций используя алгоритм быстрого преобразования Фурье (БПФ, FFT), что делает преобразование Фурье практически важной операцией на компьютере.

Оконное преобразование Фурье



Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   83


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница