Квадратичные формы Пусть Ln – n-мерное линейное пространство над полем Р



Скачать 152.62 Kb.
Дата21.10.2016
Размер152.62 Kb.
Квадратичные формы

Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (а, в).



Определение 61. Симметрическая билинейная форма f (а, в) при условии а = в называется квадратичной формой, заданной на Ln ((а) = f(а, в) ). При этом f(а, в) и (а) называются соответствующими друг другу.

Если в пространстве Ln задан базис е = (е1, е2, … , еn) и а = х1е1 + х2е2 + … + хnеn, то, используя формулу (55), получим запись квадратичной формы в координатах

(а) = (59)

Матрица квадратичной формы совпадает с матрицей соответствующей симметрической билинейной формы. Квадратичная форма в матричном виде запишется

(а) = хТА х (60)

Если в пространстве Ln зафиксирован базис, то между всеми квадратичными формами, заданными на Ln и всеми симметрическими квадратными матрицами порядка n устанавливается взаимнооднозначное соответствие. Сумма двух квадратичных форм является квадратичной формой. При умножении квадратичной формы на элемент поля Р получается тоже квадратичная форма. При сложении квадратичных форм складываются их матрицы. Если форма умножается на элемент поля Р, то на этот же элемент умножается и её матрица. Следовательно, множество всех квадратичных форм, заданных на Ln , есть линейное пространство, изоморфное линейному пространству квадратных симметрических матриц порядка n. Размерность этого пространства равна .

Так как квадратичная форма и соответствующая симметрическая билинейная форма имеют одну и ту же матрицу, то связь матриц А и А1 в разных базисах задаётся формулой (56), т.е. А1 = ТТАТ , где Т – матрица перехода от первого базиса ко второму, ТТ – матрица, транспонированная для матрицы Т. Следовательно, в разных базисах квадратичная форма имеет более или менее сложные матрицы, а поэтому более или менее сложную запись в координатах. Поэтому возникает задача: найти в пространстве Ln такой базис, в котором квадратичная форма имела бы наиболее простой вид.



Определение 62. Если (а) = 1х12 + 2х22 + … + n хn2, то говорят, что квадратичная форма (а) имеет канонический вид.

Если поле Р есть поле рациональных или действительных чисел и

(а) = х12 + х22 + … + хк2хк+12 – … – хr2,

то говорят, что квадратичная форма имеет нормальный вид. В случае, когда Р = С нормальным видом квадратичной формы называют (а) = х12 + х22 + …+ хк2 + хк+12 + .+ хr2.

Теорема 64. Всякая квадратичная форма с помощью линейного невырожденного преобразования (преобразования координат) может быть приведена к каноническому виду.

Доказательство. Пусть (а) – квадратичная форма, заданная на пространстве Ln . Пусть в Ln задан базис е и пусть в этом базисе (а) = хТА х . Матрица А –симметрическая, поэтому по теореме 60 существует такая ортогональная матрица Т, что матрица А1 = Т1АТ будет диагональной, причём на диагонали стоят собственные значения матрицы А (они все – действительные числа). Так как ортогональная матрица невырожденная, то существует такой базис е1, что Т будет матрицей перехода от базиса е к базису е1. Так как для ортогональной матрицы Т –1 = Т Т, то А1 – матрица данной формы в базисе е1. Итак, в базисе е1 данная форма имеет канонический вид.

Замечание. Приведение симметрической матрицы к диагональному виду описано в примере пункта 8.3.

Теорема 65. Всякую квадратичную форму линейным невырожденным преобразованием можно привести к нормальному виду.

Доказательство. В теореме 64 доказано, что квадратичную форму можно привести к каноническому виду. Перенумеровав, если нужно переменные, будем считать, что первые r коэффициентов в каноническом виде отличны от нуля, а остальные (n – r) равны нулю.

1) В случае, когда Р = С сделаем преобразование координат по формулам ().



()

Так как определитель этих формул отличен от нуля, то они задают преобразование координат. В новых координатах

(а) = у12 + у22 + … + уr2.

Получили комплексный нормальный вид квадратичной формы.

2) Если Р = R , т.е. (а) – действительная квадратичная форма, то в каноническом виде запишем сначала члены с положительными коэффициентами, затем – с отрицательными и, наконец, с нулевыми.



()

(а) = 1х12 + 2х22 + … + к хк2 – к+1хк+12 – … – rхr2

Сделаем преобразование координат по формулам (), получим

(а) = у12 + у22 + … + ук2ук+12 – … – уr2 .

Но это и есть нормальный вид действительной квадратичной формы.



Пример. Привести к каноническому виду квадратичную форму

= 2х1х2 + 2х1х3 – 2х1х4 – 2х2х3 + 2х2х4 + 2х3х4 .



Решение. Матрица данной квадратичной формы

А =

Для решения задачи эту матрицу нужно привести к диагональному виду. Это было сделано в примере пункта 8.3. Собственные значения этой матрицы 1 = 2 = 3 = 1, 4 = – 3. Базис из собственных векторов был найден е11 = е21 = ,

А1 =

е31 = , е41 = (1, –1, –1, 1).

В этом базисе квадратичная форма будет иметь матрицу А1. Матрицей перехода от исходного базиса к базису е1 будет матрица Т.



Т =

Следовательно, форма будет иметь следующий канонический вид

 = х12 + х22 + х32 – 3х42.




Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов

Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма (а) = . Если n = 1, то форма уже имеет канонический вид, поэтому рассуждение можно вести индукцией по числу переменных. Пусть форму можно привести к каноническому виду, если число переменных не более (n – 1). Докажем его для n переменных. Возможны два случая.

1) Все коэффициенты кк = 0. Если все коэффициенты равны 0, то можно считать, что форма имеет канонический вид. Поэтому пусть хотя бы один из коэффициентов отличен от нуля. Не нарушая общности, можно считать, что 12  0. Сделаем преобразование координат: х1 = у1у2 , х2 = у1 + у2 , х3 = у3 , … , хn = уn . В новых координатах

(а) = 12у12 12у22 + , где не будет содержать у12 и у22, поэтому эти слагаемые ни с чем проведены быть не могут. Следовательно, достаточно рассмотреть случай



2) Хотя бы один коэффициент при квадратах переменных отличен от нуля. Пусть 11 0. Соберём в форме (а) все слагаемые, содержащие х1, вынесем 11 за скобки, дополним полученную скобку до полного квадрата и компенсируем сделанные добавки.

11() +

+ (х2, х3, … ,хn), где (х2, х3, … ,хn) – квадратичная форма от (n – 1) переменной. По предположению индукции форму (х2, х3, … ,хn) можно с помощью преобразования координат (х2, х3, … ,хn) привести к каноническому виду. Дополнив это преобразование формулой у1 = , получим, что (а) = .

Рассмотрим этот способ упрощения квадратичной формы на примере.



Пример. Привести к каноническому виду квадратичную форму

1) = 3х12 + 5х22 + х326х1х2 + 9х1х3 – 7х2х3 .



Решение. Коэффициент при х12 отличен от нуля, поэтому соберём слагаемые, содержащие х1 (они подчёркнуты), вынесем за скобки коэффициент при х12 (т.е. 3) и дополним выражение в скобках до полного квадрата (за скобками компенсируем то, что добавили в скобках), получим

 = 3(х12 – 2х1х2 + 3х1х3 + х22 + х32 – 3х2х3) – 3х22х32 + 9х2х3 + 5х22 + х32 – 7х2х3 =

= 3(х1х2 +х3)2 +2х22х32 + 2х2х3. Так как коэффициент при х22 отличен от нуля, то соберём слагаемые, содержащие х2, вынесем коэффициент при х22 за скобку и дополним выражение в скобках до полного квадрата. Получим

 = 3(х1х2 + х3)2 +2(х22 + х2х3 + х32) –х32х32 =3(х1х2 + х3)2 + 2(х2 + х3)2х32. Сделаем преобразование координат:



у1 = х1х2 + х3 , у2 = х2 + х3 , у3 = х3. В новых координатах получим, что

 = 3у12 + 2у22у32.

Если квадратичная форма задана над полем действительных чисел, то сделав ещё одно преобразование координат: z1 = у1, z2 = у2 , z3 = у3 , получим нормальный вид данной формы = z12 + z22 – z32.

2) = х1х3 + 2х2х3 + 4х3х4 .



Решение. Так как данная квадратичная форма не содержит квадратов переменных, то сначала сделаем преобразование координат по формулам: х1 =у1у3, х2 =у2, х3 =у1 + у3, х4= у4. Получим = (у1у3)( у1 + у3) + 2у2(у1у3) + 4(у1 + у3)у4 = у12у32 + 1у2 + 1у4 –2у2у3 + 4у3у4. Соберём слагаемые с у1 (коэффициент при у12 равен 1, поэтому ничего за скобки выносить не надо). Получим = (у12+1у2 + 1у4 + у22 +4у42+4у2у4) – у22– 4у42 4у2у4у322у2у3 + 4у3у4 = = (у1 + у2 + 2у4)2 – (у22 + 2у2у3 + 4у2у4 + у32 + 4у42 + 4у3у4) + у32+ 4у42 + 4у3у4 – 4у42у32 + 4у3у4 = = (у1 + у2 + 2у4)2 – (у2 + у3 + 2у4)2 + 4у3у4. Для преобразования последнего слагаемого снова нужно положить у3 = z3 – z4, у4 = z3 + z4. Отсюда z3 = , z4 =. Итак, сделаем преобразование координат по формулам:

z1 = у1 + у2 + 2у4 , z2 = у2 + у3 + 2у4 , z3 = , z4 =. В новых координатах

 = z12 z22 + 4z32 – 4z42.

Получили канонический вид данной квадратичной формы над полем действительных чисел.
Закон инерции квадратичных форм

Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальные виды одной и той же квадратичной формы.

Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма (а). Пусть в Ln задан базис е = (е1, е2, … , еn) и пусть А – матрица данной формы в этом базисе. Пусть е1 = (е11, е21, … , еn1) – один из базисов, в котором (а) имеет канонический вид, и Т матрица перехода от базиса е к базису е1. В базисе е1 форма (а) имеет диагональную матрицу А1. По формуле (56) А1 = ТТАТ. Матрицы Т и ТТ невырожденные. Умножение матрицы А на невырожденную матрицу не меняет ранга матрицы А, следовательно, rang A = rang A1, т.е. в любом базисе матрица квадратичной формы имеет один и тот же ранг.

Определение 63. Рангом квадратичной формы, заданной на линейном пространстве Ln называется ранг её матрицы в любом базисе этого пространства.

Так как ранг диагональной матрицы равен числу отличных от нуля диагональных элементов, то любой канонический вид данной квадратичной формы содержит одно и тоже число квадратов переменных с ненулевыми коэффициентами. Это число равно рангу формы. Следовательно, доказано утверждение :

Теорема 66. Комплексная квадратичная форма любым невырожденным линейным преобразованием приводится к одному и тому же нормальному виду, состоящему из r квадратов переменных с единичными коэффициентами, т.е. = х12 + х22 + … + хr2.

Если поле Р есть поле действительных чисел, то нормальный вид квадратичной формы будет (а) = х12 + х22 + … + хк2хк+12 – … – хr2.



Определение 64. Число квадратов переменных, входящих с коэффициентом (+1) в нормальный вид действительной квадратичной формы, называется положительным индексом инерции этой формы. Число квадратов с коэффициентом (–1) называется отрицательным индексом инерции, разность между числом переменных и рангом квадратичной формы (т.е. n – r) называется её дефектом.

Теорема 67 (закон инерции квадратичных форм). Число положительных и число отрицательных квадратов в нормальном виде, к которому приводится квадратичная форма с действительными коэффициентами действительным невырожденным линейным преобразованием, не зависит от выбора этого преобразования.

Доказательство. Пусть (а) – квадратичная форма, заданная в базисе е = (е1, е2, … , еn) линейного пространства Ln над полем R, а = х1е1 + х2е2 + … + хnеn. Пусть эта форма приведена двумя способами к двум нормальным видам. Согласно предыдущим результатам оба этих нормальных вида содержат одинаковое число квадратов переменных с ненулевыми коэффициентами. Пусть

 = у12 + у22 + … + ук2ук+12 – … – уr2 =



= z12 + z22 + … + zр2 – zр+12 – … – zr2. ()

Пусть уі = , і = 1, 2, … , n (), и zј = , ј = 1, 2, … , n ().



Так как эти формулы задают невырожденные преобразования, то их определители отличны от нуля. Достаточно доказать, что к = р. Предположим, что к р. Не нарушая общности, можно считать, что к р. Составим систему уравнений у1 = у2 = … = ук = zр+1 = … = zr = zr+1 = … = zn = 0. Это система n – р + к линейных однородных уравнений от n неизвестных. Так как число уравнений меньше числа неизвестных, то она имеет ненулевые решения. Пусть (х10, х20, … , хn 0 ) – одно из них. Подставив это решение в формулы () и (), вычислим все уі и zј и подставим их в равенство (). Получим –(ук+10)2 – … – (уr0)2 = (z10)2 + (z20)2 + … + (zр0)2. Это равенство возможно тогда и только тогда, когда ук+10 = … = уr0 = z10 = z20 = … = zр0 = 0. Получили, что система z1 = z2 = … = zр = zр+1 = … = zr = zr+1 = … = zn = 0 имеет ненулевое решение (х10, х20, … , хn 0 ), что невозможно, т.к. ранг этой системы равен n. Итак, наше предположение не верно. Следовательно, к = р.

Положительно определённые квадратичные формы

Определение 65. Действительная квадратичная форма называется положительно определённой, если для любого вектора а0 имеет место (а)  0.

Теорема 68. Действительная квадратичная форма является положительно определённой тогда и только тогда, когда её ранг и положительный индекс инерции равны числу неизвестных.

Доказательство.  Пусть (а) – действительная положительно определённая квадратичная форма. Пусть она приводится к нормальному виду

у12 + у22 + … + ук2ук+12 – … – уr2 (),

в котором либо r n, либо r = n, но к n. Пусть преобразование координат, с помощью которого форма приведена к нормальному виду, задаётся формулами уі = (). Определитель этих формул отличен от нуля. Если r n, то возьмём у1 = у2 = … = уn–1 = 0, уn = 1 и подставим в (). Получим систему n линейных неоднородных уравнений с n неизвестными и с определителем, отличным от нуля. По правилу Крамера эта система имеет единственное решение. Очевидно, это решение не нулевое, поэтому определяет ненулевой вектор а. Но тогда (а) = 0, что противоречит определению положительно определённой формы. Аналогично приходим к противоречию и в случае r = n, но к n. Итак, если форма положительно определённая, то её нормальный вид у12 + у22 + … + уn2. Это и значит, что ранг и положительный индекс инерции равны n.



 Ранг и положительный индекс инерции действительной квадратичной формы равны n. Докажите самостоятельно, что форма положительно определённая.

Отметим без доказательства ещё одну теорему о положительно определённых действительных квадратичных формах.



Теорема 69. Действительная квадратичная форма является положительно определённой тогда и только тогда, когда все главные миноры её матрицы положительны.

Теорема 70. Квадрат длины вектора в любом базисе евклидова пространства задаётся положительно определённой квадратичной формой.

Доказательство. Пусть Еnn-мерное евклидово пространство, е = (е1, е2, … , еn) – базис в нём и Г – матрица Грама, задающая скалярное произведение векторов в этом базисе. Если а = х1е1 + х2е2 + … + хnеn , в = у1е1+ у2е2 + … + уnеn, то (а, в) = х ТГу, где х Т– строка координат вектора а, у – столбец координат вектора в. Следовательно, а2 = (а, а) = х ТГх. Если сравнить с формулой (60), то получим, что х ТГх есть квадратичная форма с матрицей Г. В пространстве Еn есть ортонормированный базис. В этом базисе а2 = х12 + х22 +…+ хn2. Но это значит, что при переходе к ортонормированному базису квадратичная форма х ТГх приводится к нормальному виду х12 + х22 +…+ хn2. По теореме 68 получаем, что форма х ТГх является положительно определённой.

Пример. Какие из следующих квадратичных форм являются положительно определёнными?

1. 4х12х1х2 + 3х22х2х3 + 6х2х4.

2. 4х1х2х1х3 + 2х22 – 4х2х3 + 3х2х4 + 5х42.

3. 4х12 – 5х1х2 + 3х22 – 2х2х3 + х32 + 4х2х4х42 .



Решение. Ответить на вопрос можно двумя способами: привести форму к каноническому виду или вычислить главные миноры матрицы данной формы. Для первой формы используем первый способ, для второй и третьей – второй способ.

1. 4х12х1х2 + 3х22х2х3 + 6х2х4 = (4х12х1х2 + ) – + 3х22х2х3 + 6х2х4 =

= (2х1)2 + ( х22

= (2х1)2 + ( =

= (2х1)2 + (. Отсюда следует, что ранг данной формы равен 3, т.е. меньше числа переменных, поэтому эта форма не является положительно определённой (теорема 68).

2. Составим матрицу второй квадратичной формы и найдём главные её миноры.

А = , М1 = 0. Уже отсюда следует, что форма не является положительно определённой (теорема 69).

3. Составим матрицу третьей квадратичной формы и найдём главные её миноры.



А = , М1 = 4  0, М2 = = 5,75  0, М3 = 1,25  0,

М4 = А= 14,25  0. Итак, все главные миноры положительны. Следовательно, третья квадратичная форма положительно определённая.

Распадающиеся квадратичные формы

Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм.

Теорема 70. Квадратичная форма над полем комплексных чисел распадается тогда и только тогда, когда её ранг меньше или равен двум. Квадратичная форма над полем действительных чисел распадается тогда и только тогда, когда либо её ранг не больше единицы, либо её ранг равен двум, а положительный индекс инерции равен единице.

Доказательство. Если форма нулевая (её ранг равен нулю), то утверждение теоремы очевидно. Рассмотрим любую ненулевую форму (а).

 Пусть квадратичная форма распадающаяся. Тогда

(а) = (1х1 + 2х2 + … + nхn)(1х1 + 2х2 + … + nхn).

Возможны два случая:

1. к = к для всех к = 1, 2, … , n. Тогда (а) = (1х1 + 2х2 + … + nхn)2.

Сделав преобразование координат по формулам:



у1 = 1х1 + 2х2 + … + nхn , у2 = х2 , … , уn = хn , получим (а) = у12. Но это канонический вид данной формы. Следовательно, ранг формы равен 1.

2. Не все к равны соответствующим к .

Сделав преобразование координат по формулам:

у1 = 1х1 + 2х2 + … + nхn , у2 = 1х1 + 2х2 + … + nхn , у3 = х3 , … , уn = хn , получим

= у1у2 .

Сделав ещё одно преобразование координат по формулам:

у1 = z1 – z2 , у2 = z1 + z2 , у3 = z3 , … , zn , получим = z12 – z22. В случае поля действительных чисел это выражение является нормальным видом данной формы. Следовательно, ранг формы равен 2, а положительный индекс инерции равен 1. Если дана форма над полем комплексных чисел, то преобразование у1 = z1 –i z2 , у2 = z1 +i z2 , у3 = z3 , … , zn приводит форму к виду = z12 + z22. Ранг этой формы равен 2.

 Если действительная или комплексная форма имеет ранг 1, то она приводится к нормальному виду (а) = у12. Из формул преобразования координат у1=1х1 + 2х2 +…+ nхn . Но тогда = (1х1 + 2х2 + … + nхn)2, т.е. форма распадающаяся.

Если комплексная форма имеет ранг 2, то она приводится к виду

= z12 + z22 = (z1 – i z2)( z1 +i z2).

Подставив вместо z1 и z2 их выражения из формул преобразования координат, получим в исходных координатах (а) = (1х1 + 2х2 + … + nхn)(1х1 + 2х2 + … + nхn), т.е. форма распадающаяся.

Если действительная форма имеет ранг 2 и положительный индекс инерции 1, то она приводится к виду = z12 – z22 = (z1 – z2)(z1 + z2). Подставив вместо z1 и z2 их выражения, получим (а) = (1х1 + 2х2 + … + nхn)(1х1 + 2х2 + … + nхn), т.е. форма распадающаяся.


Пример. Будет ли распадающейся над полем действительных чисел квадратичная форма: = 3х12 + 3х1х2 – 2х1х3 + 8х1х4 – 2х2х3 + 5х2х4 – 2х3х4 + 5х42.

Решение. Приведём форму к каноническому виду.

= (36х12 + 36х1х2 – 24х1х3 + 96х1х4 + 9х22 + 4х32 + 64х42 – 12х2х3 + 48х2х4 – 32х3х4) – х22



х32х42 + х2х3 – 4х2х4 + х3х4 – 2х2х3 + 5х2х4 – 2х3х4 + 5х42 = (6х1 + 3х2 – 2х3 + 8х4)2

(х22 + 3х2х3 – 3х2х4 + х32 + х42 – 2х3х4) + х32 + х42 х3х4х32х42 + х3х4

– 2х3х4 + 5х42 = (6х1 + 3х2 – 2х3 + 8х4)2(х2 + х3 х4)2. Отсюда видно, что ранг данной формы равен 2, а положительный индекс инерции равен 1, следовательно, форма распадается. Действительно,

= (3х1 +х2 х3 + 4х4 + х2 + х3 х4)( 3х1 + х2 х3 + 4х4 х2 х3 + х4).



Отсюда = (х1 + х2 + х4)(3х1 – 2х3 + 5х4).


База данных защищена авторским правом ©grazit.ru 2016
обратиться к администрации

    Главная страница