Методическое пособие к лабораторной работе по теме «Аналогово-цифровые преобразователи» «Информационные технологии и управление в технических системах»



Скачать 483.03 Kb.
страница2/3
Дата17.10.2016
Размер483.03 Kb.
ТипМетодическое пособие
1   2   3

Рисунок 8 - АЦП последовательного приближения

переключились бы в состояние "00100000". Но на этом такте преобразования выходное напряжение ЦАП меньше, чем входное напряжение, и компаратор переключается в состояние логической 1 (рисунок 10). Это предписывает регистру последовательного приближения сохранить "1" во втором разряде и подать "1" на третий разряд. Описанный алгоритм работы затем вновь повторяется до последнего разряда. Таким образом, для АЦП последовательного приближения требуется один внутренний такт преобразования для каждого разряда, или N тактов для N-разрядного преобразования.



Рисунок 9 - Дерево аналого-цифрового преобразования
Тем не менее, работа АЦП последовательного приближения имеет особенность, связанную с переходными процессами во внутреннем ЦАП. Теоретически, напряжение на выходе ЦАП для каждого из N внутренних тактов преобразования должно устанавливаться за одинаковый промежуток времени. Но на самом деле этот промежуток в первых тактах значительно больше, чем в последних. Поэтому время преобразования 16-разрядного АЦП последовательного приближения более, чем в два раза превышает время преобразования 8-разрядного АЦП данного типа.

АЦП последовательного приближения позволяют кратчайшим путем приблизиться к измеряемой величине и завершить процесс преобразования всего за m последовательных приближений (m - разрядность выходного кода) вместо 2m-1




Рисунок 10 - Состояние компаратора и выходной код АЦП
которые потребовались бы в случае использования метода одностороннего приближения. Выигрыш в быстродействии будет тем большим, чем больше разрядность m. При m=6 такой выигрыш будет более чем десятикратным (6 против 26=64), то при m=10 он достигнет более двух порядков (10 против 210 = 1024). С помощью таких АЦП, в зависимости от числа используемых разрядов, можно получить до 105 - 106 преобразований в секунду. К тому же статическая погрешность преобразователей данного типа весьма незначительна и определяется в основном используемым ЦАП. Это позволяет реализовать разрешающую способность до 16 двоичных разрядов и более.

Данный класс АЦП, представляя собой разумный технический компромисс между точностью и быстродействием, находит широкое применение— как при построении цифровых измерительных приборов, так и в различных системах цифровой обработки быстро меняющихся сигналов совместно с УВХ или без последних.





    1. Сигма-дельта АЦП

Для проведения большинства измерений часто не требуется АЦП со скоростью преобразования, которую даёт АЦП последовательного приближения, зато необходима большая разрешающая способность.

Сигма-дельта АЦП могут обеспечивать разрешающую способность до 24 разрядов, но при этом уступают в скорости преобразования. Так, в сигма- дельта АЦП при 16 разрядах можно получить частоту дискретизации до 100К отсчетов/сек, а при 24 разрядах эта частота падает до 100-1К отсчетов/сек, в зависимости от устройства.

Обычно сигма-дельта АЦП применяются в разнообразных системах сбора данных и в измерительном оборудовании (измерение давления, температуры, веса и т.п.), когда не требуется высокая частота дискретизации и необходимо разрешение более 16 разрядов.

Принцип работы сигма-дельта АЦП сложнее для понимания. Эта структура относится к классу интегрирующих АЦП. Но основная особенность сигма-дельта АЦП состоит в том, что частота следования выборок, при которых собственно и происходит анализ уровня напряжения измеряемого сигнала, существенно превышает частоту появления отсчетов на выходе АЦП (частоту дискретизации). Эта частота следования выборок называется частотой передискретизации. Так, сигма-дельта АЦП со скоростью преобразования 100К отсчетов/сек, в котором используется частота передискретизации в 128 раз больше, будет производить выборку значений входного аналогового сигнала с частотой 12.8М отсчетов/сек.

Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N-гo порядка содержат N сумматоров и N интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.

Наиболее широко в составе ИМС используются однобитные сигма- дельта модуляторы, в которых в качестве АЦП используется компаратор, а в качестве ЦАП – аналоговый коммутатор (рисунок 11).





Рисунок 11 - Структурная схема сигма-дельта АЦП первого порядка

Принцип действия пояснен в таблице 2 на примере преобразования входного сигнала, равного 0,6 В, при Uoп = +1B и -1B. Пусть постоянная времени интегрирования интегратора численно равна периоду тактовых импульсов. В нулевом периоде выходное напряжение интегратора сбрасывается в нуль. На выходе ЦАП также устанавливается нулевое напряжение. Затем схема проходит через последовательность состояний (таблица 2, UK - состояние компаратора в битах).

В тактовые периоды 2 и 7 состояния системы идентичны, так как при неизменном входном сигнале UBX = 0,6 В цикл работы занимает пять тактовых периодов. Усреднение выходного сигнала ЦАП за цикл действительно дает величину напряжения 0,6 В :

(1-1+1+1+1)/5 = 0,6



Это доказывает корректность работы сигма-дельта модулятора. Входной сигнал поступает на инвертирующий вход дифференциального усилителя, а на неинвертирующий - выход одноразрядного ЦАП. Таким образом дифференциальный усилитель служит элементом сравнения (вычитающим устройством).
Таблица 2 - Иллюстрация работы сигма-дельта АЦП


Uвх=0,6 В

Uвх=0 В

N такта

U, В

Uи, В

Uк, бит

UЦАП, В

N такта

U, В

Uи, В

Uк, бит

UЦАП, В

1

0,6

0,6

1

1

1

1

1

1

1

2

-0,4

0,2

1

1

2

-1

0

0

-1

3

-0,4

-0,2

0

-1

3

1

1

1

1

4

1,6

1,4

1

1

4

-1

0

0

-1

5

-0,4

1,0

1

1

5

1

1

1

1

6

-0,4

0,6

1

1

6

-1

0

0

-1

7

-0,4

0,2

1

1

7

1

1

1

1

8

-0,4

-0,2

0

-1

8

-1

0

0

-1

9

1,6

1,4

1

1

9

1

1

1

1

10

-0,4

1,0

1

1

10

-1

0

0

-1

11

-0,4

0,6

1

1

11

1

1

1

1

12

-0,4

0,2

1

1

12

-1

0

0

-1

13

-0,4

-0,2

0

-1

13

1

1

1

1

14

1,6

1,4

1

1

14

-1

0

0

-1

15

-0,4

1,0

1

1

15

1

1

1

1

16

-0,4

0,6

1

1

16

-1

0

0

-1

Интегратор - это активный аналоговый ФНЧ с высоким усилением в полосе частот входного сигнала и подавлением частотных составляющих, лежащих вне этой полосы. Квантователь - это в первом приближении компаратор с порогом срабатывания, равным "0", выход которого может переключаться из состояния "-Uoп" в состояние "+Uоп", и который подключен ко входу синхронизируемого тактовой частотой (частотой дискретизации) элемента памяти, сохраняющего это состояние в течение тактового интервала. Если предположить, что на выходе этого элемента памяти, который одновременно является и выходом с уровнями, модулятора, должен формироваться цифровой сигнал соответствующий уровням логического "нуля" и "единицы" (АЦП), то таким элементом памяти может служить обычный D-триггер. Правда, в петле обратной связи при этом понадобится отдельное переключающее устройство, выполняющее функции ЦАП (на рисунке 11 показано штриховой линией), который управляется цифровым сигналом, а на выходе формирует либо "-Uoп", либо "+Uoп".

Дополнительным и очень важным достоинством сигма-дельта АЦП является то, что все его внутренние узлы могут быть выполнены интегральным способом на площади одного кремниевого кристалла. Это заметно снижает стоимость конечных устройств и повышает стабильность характеристик АЦП.

Способ формирования многоразрядных отсчётов на выходе сигма- дельта модулятора зависит от того, какова требуется разрядность этих отсчётов и с какой скоростью они должны следовать. Повышение разрядности и скорости следования отсчётов (частоты дискретизации Fд) усложняет задачу и ограничивает выбор средств, с помощью которых эта задача может быть решена.

Наиболее простым способом получения многоразрядных отсчётов на выходе сигма-дельта модулятора является подсчёт количества «единиц» в цифровом потоке, формируемом одноконтурным сигма-дельта модулятора 1-го порядка, за период дискретизации Тд=1/ Fд .

Если заданы частота дискретизации Fд и разрядность выходного кода m, то тактовая частота Fт, на которой работает сигма-дельта модулятор, должна быть выше частоты дискретизации в k раз:

Fт = k*Fд ,

где k = 2m (при максимальном Uвх все разряды счётчика 2 должны быть установлены в «единицы»). Тогда интервал времени равный периоду дискретизации, можно сформировать путём деления тактовой частоты FT на число k с помощью обычного счётчика (счётчик 1).

Подсчет «единиц» в цифровом потоке также осуществляется с помощью счетчика (счетчик 2), причем на его счетный вход подается та же тактовая частота FT, а на вход разрешения счета поступают «единицы» кода. Когда на входе разрешения присутствует «единица», счетчик увеличивает свое содержание, а когда «0» — состояние остается прежним. В конце каждого периода дискретизации сигналом со счетчика 1 содержимое счетчика 2 переписывается в N-разрядный выходной регистр, а сам счетчик 2 обнуляется. Таким образом, на выходе АЦП формируется код отсчета, численно равный количеству «единиц» в цифровом потоке на выходе D-триггера за период дискретизации.

Описанный метод чрезвычайно прост, но обладает невысокой точностью и применим только для квантования медленно меняющихся процессов или в случае, когда высокой точности не требуется. Если же сигнал на входе преобразователя меняется быстро (следовательно, частота дискретизации должна быть велика) и необходимо получить высокое разрешение, то использование данного метода становится невозможным. В подобных случаях пользуются другими методами построения сигма-дельта АЦП — применением модуляторов 2-го и более высоких порядков, каскадным соединением таких модуляторов, использованием многоразрядных квантователей и многоразрядных ЦАП в петле обратной связи, а на выходе размещают сложные цифровые фильтры высоких порядков, выполняющие операцию децимации (прореживания) одноразрядного цифрового потока - вместе с увеличением разрядности выходного кода.





    1. Интегрирующие АЦП

И последний тип АЦП, о котором пойдет здесь речь - АЦП двухтактного интегрирования. В цифровых мультиметрах, как правило, используются именно такие АЦП, т. к. в этих измерительных приборах необходимо сочетание высокого разрешения и высокого помехоподавления. Идея преобразования в таком интегрирующем АЦП гораздо менее сложна, чем в сигма-дельта АЦП.

На рисунке 12 показан принцип работы АЦП двухтактного интегрирования. Входной сигнал заряжает конденсатор в течение фиксированного периода времени, который обычно составляет один период частоты питающей сети (50 или 60 Гц) или кратен ему. При интегрировании входного сигнала в течение промежутка времени такой длительности высокочастотные помехи подавляются. Одновременно исключается влияние нестабильности напряжения сетевого источника питания на точность преобразования. Это происходит потому, что значение интеграла от синусоидального сигнала равно нулю, если интегрирование осуществляется во временном интервале, кратном периоду изменения синусоиды.

По окончании времени заряда АЦП разряжает конденсатор с фиксированной скоростью, в то время как внутренний счетчик подсчитывает количество тактовых импульсов за время разряда конденсатора. Большее время разряда, таким образом, соответствует большему значению показаний счетчика и большему измеряемому напряжению (рисунок 12).

АЦП двухтактного интегрирования имеют высокую точность и высокую разрешающую способность, а также имеют сравнительно простую структуру. Это дает возможность выполнять их в виде интегральных микросхем. Основной недостаток таких АЦП - большое время преобразования, обусловленное привязкой периода интегрирования к длительности периода питающей сети. Например, для 50 Гц-го - оборудования частота дискретизации АЦП двухтактного интегрирования не превышает 25 отсчетов/сек. Конечно, такие АЦП могут работать и с большей частотой дискретизации, но при увеличении последней помехозащищенность падает.



Рисунок 12 - Интегрирующий АЦП. Пунктиром выделена помеха от сети


    1. Погрешность АЦП

Существуют общие определения, которые принято использовать в отношении аналого-цифровых преобразователей. Тем не менее, характеристики, приводимые в технической документации производителей АЦП, могут показаться довольно путаными. Правильный же выбор оптимального по сочетанию своих характеристик АЦП для конкретного приложения требует точной интерпретации данных, приводимых в технической документации.

Наиболее часто путаемыми параметрами являются разрешающая способность и точность, хотя эти две характеристики реального АЦП крайне слабо связаны между собой. Разрешение не идентично точности, 12-разрядный АЦП может иметь меньшую точность, чем 8-разрядный. Для АЦП разрешение представляет собой меру того, на какое количество сегментов может быть поделен входной диапазон измеряемого аналогового сигнала (например, для 8-разрядного АЦП это 28=256 сегментов). Точность же характеризует суммарное отклонение результата преобразования от своего идеального значения для данного входного напряжения. То есть, разрешающая способность характеризует потенциальные возможности АЦП, а совокупность точностных параметров определяет реализуемость такой потенциальной возможности.

АЦП преобразует входной аналоговый сигнал в выходной цифровой код. Для реальных преобразователей, изготавливаемых в виде интегральных микросхем, процесс преобразования не является идеальным: на него оказывают влияние как технологический разброс параметров при производстве, так и различные внешние помехи. Поэтому цифровой код на выходе АЦП определяется с погрешностью. В спецификации на АЦП указываются погрешности, которые дает сам преобразователь. Их обычно делят на статические и динамические. При этом именно конечное приложение определяет, какие характеристики АЦП будут считаться определяющими, самыми важными в каждом конкретном случае. В большинстве применений АЦП используют для измерения медленно изменяющегося, низкочастотного сигнала (например, от датчика температуры, давления, от тензодатчика и т.п.), когда входное напряжение пропорционально относительно постоянной физической величине. Здесь основную роль играет статическая погрешность измерения. В спецификации АЦП этот тип погрешности определяют аддитивная погрешность (Offset), мультипликативная погрешность (Full-Scale), дифференциальная нелинейность (DNL), интегральная нелинейность (INL) и погрешность квантования. Эти пять характеристик позволяют полностью описать статическую погрешность АЦП.


1.10.1. Идеальная передаточная характеристика АЦП
Передаточная характеристика АЦП - это функция зависимости кода на выходе АЦП от напряжения на его входе. Такой график представляет собой кусочно-линейную функцию из 2N "ступеней", где N - разрядность АЦП. Каждый горизонтальный отрезок этой функции соответствует одному из значений выходного кода АЦП (см. рисунок 13). Если соединить линиями начала этих горизонтальных отрезков (на границах перехода от одного значения кода к другому), то идеальная передаточная характеристика будет представлять собой прямую линию, проходящую через начало координат.



Рисунок 13 - Идеальная передаточная характеристика 3-х разрядного АЦП

Рисунок 13 иллюстрирует идеальную передаточную характеристику для 3-х разрядного АЦП с контрольными точками на границах перехода кода. Выходной код принимает наименьшее значение (000b) при значении входного сигнала от 0 до 1/8 полной шкалы (максимального значения кода этого АЦП). Также следует отметить, что АЦП достигнет значения кода полной шкалы (111b) при 7/8 полной шкалы, а не при значении полной шкалы. Т. о. переход в максимальное значение на выходе происходит не при напряжении полной шкалы, а при значении, меньшем на наименьший значащий разряд (LSB), чем входное напряжение полной шкалы. Передаточная характеристика может быть реализована со смещением -1/2 LSB. Это достигается смещением передаточной характеристики влево, что смещает погрешность квантования из диапазона -1... 0 LSB в диапазон -1/2 ... +1/2 LSB.



Рисунок 14 - Передаточная характеристика 3-разрядного АЦП со смещением на -½ LSB: 1— наибольшее значение кода при значении входного напряжения, меньшем на ½ LSB, чем входное напряжение к полной шкале; 2 — передаточная функция смещается влево на ½ LSB для уменьшения погрешности квантования на ½ LSB



      1. Аддитивная погрешность

Из-за технологического разброса параметров при изготовлении интегральных микросхем реальные АЦП не имеют идеальной передаточной характеристики. Отклонения от идеальной передаточной характеристики определяют статическую погрешность АЦП и приводятся в технической документации.

Идеальная передаточная характеристика АЦП пересекает начало координат, а первый переход кода происходит при достижении значения 1 LSB. Аддитивная погрешность (погрешность смещения) может быть определена как смещение всей передаточной характеристики влево или вправо относительно оси входного напряжения, как показано на рисунке 15. Таким образом, в составляющую аддитивной погрешности (смещение реальной передаточной характеристики АЦП относительно идеальной) включается и смещение {-1/2….1/2} < LSB.




Поделитесь с Вашими друзьями:
1   2   3


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал