На тему: Об интегральных формулах Вилля-Шварца



страница2/16
Дата21.08.2017
Размер1 Mb.
1   2   3   4   5   6   7   8   9   ...   16

в) Видоизмененная задача Дирихле.
Пусть S+ - связная область, ограниченная простыми замкнутыми непересекающимися гладкими контурами , из которых первый охватывает все остальные. Под L мы будем подразумевать совокупность этих контуров , (). Через - мы обозначим совокупность конечных областей заключенных, соответственно, внутри контуров и бесконечной области , состоящей из точек расположенных вне . На контуры мы наложим еще следующее условие: угол, составляемый касательной к с постоянным направлением, удовлетворяет условию H; иными словами, мы будем считать, что L удовлетворяет условию Ляпунова [17,24].

Функция удовлетворяет условию H на этом множестве, если для любых двух переменной на этом множестве



, (4)

где A и - положительные постоянные показатели Гельдера, А – коэффициент, а - показатель условия Н и при =1 – условие Липшица, функции, удовлетворяющие условию Н называются непрерывными по Гельдеру и сильнее, чем обычное определение непрерывности.


г) Классическая задача Дирихле для многосвязных областей [24].
Найти (действительную) функцию u(x,y), гармоническую в , по граничному условию

u=f(t) на L, (5)

где f(t) – заданная на L (действительная) непрерывная функция; в случае бесконечной области от функции u(x,y) требуется еще, чтобы она оставалась ограниченной на бесконечности, т.е. и стремится к вполне определенному пределу, когда z уходит в бесконечность.



Напомним, что всякая функция u(z) гармоническая вне круга в ряд.

, )

абсолютно и равномерно сходящийся вне круга любого радиуса поэтому u→ при r→.

Для некоторых применений не меньший интерес представляет и следующая задача, которая называется "видоизмененной задачей Дирихле". Термин этот введен в статье Н.И.Мусхелишвили и Д.З.Авазошвили [17].

Видоизмененная задача Дирихле – задача Дирихле

для многосвязных областей.

Найти функцию u(x,y), гармоническую в S+, непрерывную в , по следующим условиям:

1. u(x,y)=Ф(z) является действительной частью функции Ф(z), голоморфной в S+;

2. она удовлетворяет граничному условию



u=f(t)+(t) на L, (6)

где f(t) – заданная на непрерывная функция , , (7)

где постоянные не задаваемые заранее; в случае бесконечной области требование u(x,y)=f(t)+ на заменяются требованием ограниченности u(x,y) на бесконечности.

Можно показать, что постоянные вполне определяются условиями самой задачи, если (произвольно) фиксировать одну из них.

Если L состоит из единственного замкнутого контура, то различают два случая:

а) р=0. Тогда S+ представляет собой конечную часть плоскости, ограниченную контуром ;

б) р=1, а контур отсутствует. Тогда область S+ представляет собой бесконечную часть плоскости, ограниченную контуром .

Легко видеть, что в случае а) задачи А и В совпадают (если считать =0) в случае б) эти задачи непосредственно сводятся одна к другой.

Каждая из задач А и В не может иметь более одного решения (если =0).
д) Общая формулировка задачи Дирихле.
Задача Дирихле – задача отыскания регулярной в области D гармонической функции и которая на границе Г области D совпадает с наперед заданной функцией . Задачу отыскания регулярного в области решения эллиптического уравнения 2-го порядка, принимающего на перед заданные значения на границе области, также называется задачей Дирихле, или первой краевой задачей.

Вопросы связанные с этой задачей, рассматривались еще К.Гауссом, а затем Дирихле. Для областей D с достаточно гладкой границей Г решение задачи Дирихле можно представить интегральной формулой



, (8)

где - производная по направлению внутренней нормали в точке функции Грина , характеризуемой следующими свойствами:



1. , при 3 или

, при 2,

где - расстояние между точками и , - площадь единичной сферы в , - регулярная в гармоническая функция как относительно координат , так и относительно координат ;

2. , когда , .

Для шара, полупространства и некоторых других простейших областей функция Грина строится явно и формула (8) дает эффективное решение задачи Дирихле. Получаемые при этом для шара и полупространства формулы носят название формул Пуассона.

Задача Дирихле является одной из основных проблем теории потенциала – теории гармонических функций.

Для обобщенного по Винеру решения задачи Дирихле справедливо интегральное представление в виде формулы Вилля-Пуассона



, (9)

являющейся обобщением формулы (8). Здесь - гармоническая мера множества в точке . Отсюда возникает возможность рассмотрения обобщенной задачи Дирихле для произвольных граничных функций , при этом можно требовать удовлетворения граничного условия лишь в некоторой ослабленной форме.

Например, если - область с достаточно гладкой границей Г, а граничащая функция имеет только точки разрыва 1-го рода, то можно требовать удовлетворения граничного условия лишь в точках непрерывности , для обеспечения единственности решения в точках разрыва требуется ограниченность решения.
е) Задача Неймана.
Наряду с задачей Дирихле для некоторых приложений важно рассмотреть так называемую вторую краевую задачу, или задачу Неймана:

Найти гармоническую в области функцию , зная значения ее нормальной производной на границе С:



(10)

и значение в какой-либо точке в области .

Для определенности мы будем предполагать, что в (10) рассматривается внешняя нормаль, что означает угол, образованный этой нормалью с осью х. Функция может иметь на конечное число точек разрыва 1-го рода, функция и ее частные производные первого порядка предполагаются ограниченными.

Следующая теорема выражает от нормальной производной гармонической функции:

Если функция гармонична в односвязной области и непрерывна вместе со своими частными производными в , то

, (11)

где - граница области обозначает производную в направлении нормали к , а - дифференциал дуги.

Из этой теоремы следует, что для разрешимости задачи Неймана необходимо выполнения соотношения

. (12)

Доказывается единственность решения задачи Неймана и при доказательстве единственности решения задачи Неймана можно ограничиться случаем, когда область представляет собой полуплоскость (z, > 0).

В дополнительном предположении непрерывности частных производных в решение задачи Неймана сводится к решению задачи Дирихле для сопряженной гармонической функции.

Две гармонические в области функции и , связанные условиями Даламбера-Эйлера называются сопряженными.



Как мы знаем, для всякой функции гармонической в односвязной области , можно найти сопряженную с ней гармоническую функцию . Так как функция определяется своими частными производными с точностью до постоянного слагаемого, то совокупность всех гармонических функций сопряженных с дает формула:

, (13)

где С – произвольная действительная постоянная.

Заметим, что в многосвязной области интеграл (13) по контуру , определяет, вообще говоря, многозначную функцию:

, (14)

где - произвольные целые числа, а - интегралы вдоль замкнутых контуров , каждый из которых содержит внутри себя одну связную часть границы :



. (15)

Постоянные называются периодами интеграла (13) или циклическими постоянными.

Можно доказать, что решение задачи Неймана сводится к решению задачи Дирихле для сопряженной гармонической функции , где , носят название соответственно силовой функции и потенциала поля.

Функции и , представляющие собой регулярные решения системы Коши-Римана [6]:



, (16)

имеют частные производные всех порядков, т.е. аналитические функции являются решением уравнения . (17)



Условие (17) – условие комплексной дифференцируемости функции .



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   16


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница