О метрических свойствах эволюционных расстояний



страница1/5
Дата08.04.2018
Размер0,94 Mb.
  1   2   3   4   5
О МЕТРИЧЕСКИХ СВОЙСТВАХ ЭВОЛЮЦИОННЫХ РАССТОЯНИЙ

М.А. Мельчакова



Новосибирский государственный университет

mariya.melchakova@gmail.com

В.М. Ефимов

Институт цитологии и генетики СО РАН

efimov@bionet.nsc.ru


Одним из способов изучения изменчивости биологических объектов является геометризация задачи: представление объектов точками в многомерном пространстве таким образом, чтобы расстояния между точками как можно лучше соответствовали различиям между объектами. Если различия между объектами являются евклидовыми расстояниями, то эта задача (с точностью до переноса, поворота и отражения) решается методами метрического шкалирования. В некоторых случаях к различиям можно применить монотонное преобразование, переводящее их в евклидовы расстояния. В остальных случаях приходится использовать другие методы, в частности, алгоритмы неметрического шкалирования.

Рассмотрены метрические свойства некоторых эволюционных дистанций для нуклеотидных последовательностей. Показано, что расстояния Джукса-Кантора и Кимуры не являются метриками. Введено новое расстояние – -дистанция. Показано, что для -дистанции, -дистанции и расстояния Джукса-Кантора существуют монотонные преобразования, приводящие к евклидовым метрикам и позволяющие применять алгоритмы метрического шкалирования.


Определения:

Расстоянием (или различием) называется функция на , если для всех выполняются условия [1, 2]:

  1. (положительная определенность);

  2. (симметричность);

  3. (рефлексивность).

Метрикой называется расстояние, удовлетворяющее неравенству треугольника:

  1. d(x.y)

Расширенной метрикой называется метрика, принимающая значение .

Топологическое пространство монотонно вложимо в метрическое пространство , если существует непрерывная строго возрастающая функция на такая, что – метрическое пространство, изометрически вложимое в .

-дистанция – наблюдаемая доля различающихся нуклеотидов для двух последовательностей одинаковой длины. p-дистанция является метрикой Хэмминга с точностью до домножения на длину последовательности [3].

Расстояние Джукса-Кантора – предполагаемое число замен нуклеотидов в двух последовательностях, происшедших от одного неизвестного предка за эволюционное время, в пересчете на одну позицию, вычисляемое как .

Расстояние Кимуры – предполагаемое число замен в пересчете на одну позицию, вычисляемое как , где – доля транзиций, – доля трансверсий.


Поделитесь с Вашими друзьями:
  1   2   3   4   5


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница