Последствия техногенного преобразования литосферы



страница1/4
Дата31.10.2016
Размер0,74 Mb.
  1   2   3   4

    1. Последствия техногенного преобразования литосферы


Основные пути рационального использования и охраны недр

Верхняя часть литосферы подвергается интенсивному техногенному воздействию в результате хозяйственной деятельности человека, в том числе при проведении геологоразведочных работ и разработке месторождений полезных ископаемых. Возникающие в связи с этим негативные изменения нередко приводят к непрерывной ее перестройке и проявлению опасных и необратимых в экологическом отношении процессов и явлений. Изменения, происходящие в верхней части литосферы, оказывают существенное влияние на экологическую обстановку в конкретных районах, так как через ее верхние слои происходит обмен веществ и энергии с атмосферой и гидросферой, что в итоге приводит к заметному воздействию на биосферу в целом.

Верхние слои литосферы в пределах территории Беларуси испытывают интенсивное воздействие в результате проведения инженерно-геологических исследований и геологоразведочных работ на различные виды полезных ископаемых. Необходимо отметить, что только с начала 50-х годов XX в. пробурено около 1400 поисковых, разведочных и эксплуатационных скважин на нефть (глубиной до 2,5—5,2 км), более 900 скважин на каменную и калийную соли (глубиной 600—1500 м), более 1000 скважин особо охраняемых геологических объектов, имеющих особую научную, историческую, культурную, эстетическую и рекреационную ценность.

Кодекс Республики Беларусь о недрах (1997) определяет основные требования по рациональному использованию и охране недр, среди них:



  • соблюдение установленного законодательством страны порядка предоставления недр в пользование и недопущение самовольного пользования недрами;

  • полное и комплексное геологическое изучение недр, обеспечивающее достоверную оценку запасов полезных ископаемых;

  • недопущение порчи разрабатываемых и близлежащих месторождений полезных ископаемых в результате пользования недрами, а также запасов этих ископаемых, консервируемых в недрах;

  • обеспечение наиболее полного извлечения из запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов;

  • рациональное использование вскрышных пород;

  • охрана месторождений полезных ископаемых от затопления, обводнения, пожаров и других бедствий, снижающих качество и промышленную ценность полезных ископаемых.

Охрана недр и рациональное использование минеральных ресурсов непосредственно связаны с перспективами развития добывающих отраслей, геологоразведочных работ, проведением природоохранных мероприятий в целом по стране. Производственные программы (бизнес-планы) предприятий добывающей промышленности и геологоразведочных работ, с одной стороны, и планы охраны окружающей среды, с другой, должны разрабатываться в едином блоке. Однако добыче и потреблению минеральных ресурсов предшествуют геологоразведочные работы. Именно на стадии поиска и разведки полезных ископаемых выявляются наиболее рациональные пути их использования.

В Программе ускорения геологоразведочных работ по развитию минерально-сырьевой базы Республики Беларусь на 1996—2000 гг. в качестве приоритетных были определены следующие направления:



  • поиск и разведка месторождений нефти и газа;

  • поиск и подготовка к промышленному освоению бурых углей;

  • оценка перспектив алмазоносности;

  • разведка запасов железных руд;

  • подготовка к промышленному освоению минерализованных рассолов на одной из перспективных площадей;

  • поиск и разведка новых месторождений полезных ископаемых.

Предусматривались задания по приросту запасов минерального сырья, другим итоговым показателям геологоразведочного производства, в том числе задания по техническому перевооружению.

Перспективные планы и прогнозы включают разработку эколого-безопасных и экономически эффективных технологий добычи, переработки и использования минерального сырья, повышения коэффициента извлечения полезных ископаемых на эксплуатируемых месторождениях. Особенно актуально это в отношении добычи нефти, извлечение которой в условиях Беларуси не превышает 40 %, в то время как новейшие технологии позволяют повысить этот показатель до 60 %. Внедрение прогрессивных технологий при разработке калийных солей обеспечит более рациональное использование запасов Старобинского месторождения, сокращение отходов калийного производства до 10 % и уменьшение оседания земной поверхности на 15—20 %. Повышение эффективности использования минерально-сырьевых ресурсов для производства строительных материалов связано с сокращением потерь сырья в процессе добычи и производства, использованием низкосортного сырья, вторичных ресурсов. Развитие научно-технического прогресса обеспечивает вовлечение в эксплуатацию месторождений полезных ископаемых с более низким содержанием полезных веществ, более высоким содержанием вредных примесей и менее благоприятными горно-геологическими условиями залегания и в итоге — расширение минерально-сырьевой базы.

При этом отчуждаются сельскохозяйственные и лесные угодья, происходит изменение теплового баланса недр, загрязнение окружающей среды нефтепродуктами, буровым раствором, кислотами и другими токсичными компонентами, используемыми при проводке скважин. Проведение сейсмических исследований с применением буровзрывных работ, плотность которых особенно высока в пределах Припятского прогиба, вызывает нарушение физико-химических свойств почвы и верхних слоев литосферы, загрязнение грунтовых вод, техногенные изменения минерального состава отложений.

Большое негативное воздействие на характер изменения литосферы оказывает добыча полезных ископаемых. В результате деятельности горнодобывающих предприятий происходит перемещение больших объемов пород, изменение режимов поверхностных, грунтовых и подземных вод в пределах обширных территорий, нарушение структуры и продуктивности почв, активизация химических и геохимических процессов.

Особенностью добычи полезных ископаемых является их временный характер: при истощении запасов полезного ископаемого горные работы на месторождении прекращаются. В связи с этим разработку месторождений целесообразно вести так, чтобы формируемые при этом новые ландшафты, выемки, отвалы, инженерные сооружения могли в последующем с максимальным эффектом использоваться для других народнохозяйственных целей. Это обеспечит снижение негативного воздействия горных работ на окружающую среду и уменьшит затраты на ее восстановление.

Авария на Чернобыльской АЭС привела к радиоактивному загрязнению значительной части минерально-сырьевых ресурсов страны, оказавшихся в зоне ее негативного воздействия. По данным исследований, проведенных Белорусским научно-исследовательским геологоразведочным институтом, в зоне радиоактивного загрязнения оказались 132 месторождения минерально-сырьевых ресурсов, в том числе 59 разрабатываемых. Это, главным образом, месторождения глины, песков и песчано-гравийных смесей, цементного и известкового сырья, строительного и облицовочного камня. В зону загрязнения попали также Припятский нефтегазоносный бассейн и Житковичское место-Рождение бурого угля и горючих сланцев.

Охрана недр рассматривается как система мероприятий, обеспечивающая сохранение существующего разнообразия и рациональное использование геологической среды. Шимова, О.С. [и др.]. Основы экологии и экономики природопользования: учебник / О.С. Шимова, Н.К. Соколовский. – Минск: БГЭУ, 2002. (стр. 140-143)

Истощаемые и возобновляемые энергетические

ресурсы.
Истощаемые ресурсы - это запасы топлива в недрах земли.

Мировой запас угля оценивается в 9-11 трлн.т. (условного топлива) при добыче более 4,2 млрд./год. Наибольшие разведанные месторождения уже находятся на территории США, СНГ, ФРГ, Австралии. Общегеологические запасы угля на территории СНГ составляют 6 трлн.т. /50% мировых/, в т.ч. каменные угли 4,7 и бурые угли – 2,1 трлн.т. Ежегодная добыча угля – более 700 млн.т., из них 40% открытым способом.

Мировой запас нефти оценивается в 840 млрд.т. условного топлива, из них 10% - достоверные и 90% - вероятные запасы. Основной поставщик нефти на мировой рынок – страны Ближнего и Среднего Востока. Они располагают 66% мировых запасов нефти, Северная Америка – 4%, Россия – 8-10%. Отсутствуют месторождения нефти в Японии, ФРГ, Франции и многих других развитых странах.

Запасы природного газа оцениваются в 300-500 трлн. м3. Потребление энергоресурсов в мире непрерывно повышается. В расчете на 1 человека потребление энергии за период 1990-2000 г.г. увеличилось в 5 раз. Однако это потребление энергоресурсов осуществляется крайне неравномерно. Примерно 70% мировой энергии потребляют промышленно развитые страны, в которых проживает около 30% населения Земли. В среднем на 1 человека приходится в Японии 1,5-5 т., в США – около 7т., а в развивающихся странах 0,15-0,3т. в нефтяном эквиваленте.

Человечество ещё, по крайней мере, 50 и более лет сможет обеспечить значительную часть своих потребностей в различных видах энергии за счет органического топлива. Ограничить чрезмерное их потребление могут два фактора:


  • очевидная исчерпаемость запасов топлива;

  • осознание неизбежности глобальной катастрофы из-за увеличения вредных выбросов в атмосферу.

К ресурсам возобновляемой энергии относятся:

  • сток рек, волны, приливы и отливы, ветер как источники механической энергии;

  • градиент температур воды морей и океанов, воздуха, недр земли /вулканов/ как источники тепловой энергии;

  • солнечное излучение как источник лучистой энергии;

  • растения и торф как источник химической энергии.

Топливо - вещество, выделяющее при определенных экономически целесообразных условиях большое количество тепловой энергии, которая в дальнейшем используется непосредственно или преобразуется в другие виды энергии.

Топливо бывает:



  • горючее- выделяет тепло при окислении, окислитель- обычно О2, N2, азотистая кислота, перекись водорода и пр.

  • расщепляющееся или ядерное топливо (основа ядерной энергетики (уран 235).

Горючее делят на органическое и неорганическое. Органическое горючее- углерод и углеводород. Горючее бывает природное (добытое в недрах земли) и искусственное (переработанное природное). Искусственное в свою очередь делится на композиционное (полученное механической переработкой естественного, бывает в виде гранул, эмульсий, брикетов) и синтетическое (произведенное путем термохимической переработки естественного - бензин, керосин, дизельное топливо, угольный газ и т.д.).

Более 90% потребляемой энергии образуется при сжигании естественного органического топлива 3 видов:



  • твердое топливо (уголь, торф, сланцы).

  • жидкое топливо (нефть и газоконденсаты).

  • газообразное топливо (природный газ, СН4, попутный газ нефти).

Органическое топливо состоит из следующих составляющих: горючая составляющая (органические ингредиенты - С, Н, О, N, S) и негорючая составляющая (состоит из влаги, минеральной части).

Общепринятое слово "горючее" - это топливо, предназначенное для сжигания (окисления). Обычно слово "топливо" и "горючее" воспринимаются как адекватные, т.к. чаще всего "топливо" и бывает представлено "горючим". Однако следует знать и другие разновидности топлива. Так, металлы алюминий, магний, железо и др. при окислении так же могут выделять много теплоты. Окислителем вообще могут быть кислород воздуха, чистый кислород и его модификации (атомарный, озон), азотная кислота, перекись водорода и т.д.

Сейчас в основном используется ископаемое органическое горючее с окислителем - кислородом воздуха.

Различают три стадии преобразования исходного органического материала:



  • торфяная стадия - распад высокомолекулярных веществ, синтез новых; при частичном доступе кислорода образуется торф и уголь, без доступа кислорода - нефть и газы;

  • буроугольная стадия - при повышенной температуре и давлении идет полимеризация веществ, обогащение углеродом;

  • каменноугольная стадия - дальнейшая углефикация.

Жидкая смесь углеводородов мигрировала сквозь пористые породы, при этом образовались месторождения нефти, газа; высокое содержание минеральных примесей приводило к возникновению горючих сланцев.

Твердое и жидкое органическое топливо характеризуется сложностью химического состава, поэтому обычно дается только процентное содержание (элементный или элементарный процентный состав топлива) химических элементов, без указания структур соединений.

Основной элемент, выделяющий теплоту при окислении - это углерод С, менее - водород Н. Особое внимание следует уделять сере S. Она заключена как в горючей, так и в минеральной части топлива. При сжигании сера влияет на коррозионную активность продуктов сгорания, поэтому это - нежелательный элемент. Влага W в продуктах сгорания представлена внешней ("мокрое" топливо), кристаллогидратной, образованной при окислении водорода. Минеральная часть А - это различные окислы, соли и другие соединения, образующие при сжигании золу.

Состав твердого и жидкого топлива выражается в % по массе, при этом за 100% могут быть приняты:



  1. рабочая масса - используемая непосредственно для сжигания;

  2. аналитическая масса - подготовленная к анализу;

  3. сухая масса - без влаги;

  4. сухая беззольная масса;

  5. органическая масса.

Поэтому, например:

Состав топлива необходим для определения важнейшей характеристики топлива -- теплоты сгорания топлива (теплотворная способность топлива).



Теплота сгорания топлива -- это количество тепловой энергии, которая может выделиться в ходе химических реакций окисления горючих компонентов топлива с газообразным кислородом, измеряется в кДж/кг для твердого и жидкого, в кДж/м3 - для газообразного топлива.

При охлаждении продуктов сгорания влага может конденсироваться, выделяя теплоту парообразования. Поэтому различают высшую - без учета конденсации влаги, и низшую - теплоту сгорания, при этом:



Средние теплоты сгорания, кДж/кг(кДж/м3)

мазут ……….………..40200

соляр…………………42000

торф………..………….8120

бурый уголь….……….7900

антрацит……………..20900

природный газ……….35800

Для сравнения различных видов топлива их приводят к единому эквиваленту - условному топливу, имеющему теплоту сгорания 20308 кДж/кг (7000 ккал/кг). Для пересчета реального топлива в условное используется тепловой эквивалент:

,


  • для угля в среднем - 0,718;

  • газа природного - 1,24;

  • нефти - 1,43;

  • мазут - 1,3;

  • торфа - 0,4;

  • дров - 0,25.

Твердое органическое топливо по степени углефикации делится на древесину, торф, бурый уголь, каменный уголь, антрацит.

Важной характеристикой, влияющей на процесс горения твердого топлива, является выход летучих веществ (убыль массы топлива при нагреве его без кислорода при 850оС в течение 7 мин). По этому признаку угли делят на бурые (выход летучих более 40%), каменные (10 - 40%), антрациты (менее 10%). Воспламеняемость антрацитов поэтому хуже, но выше. Это надо учитывать при организации процесса сжигания.



Зола - порошкообразный горючий остаток, образующийся при полном окислении горючих элементов, термического разложения и обжига минеральных примесей.

Шлак - спекшаяся зола.

Эти продукты сгорания оказывают большое влияние на КПД топочного оборудования (загрязнения, зашлаковка), надежность работы (разрушение обмуровок, пережог труб).

Нефть в сыром виде редко используется как топливо, чаще всего для этой цели идут нефтепродукты. В зависимости от температуры перегонки нефтепродукты делят на фракции: бензиновые (200-225оС); керосиновые (140-300оС); дизельные (190-350оС); соляровые (300-400оС); мазутные (более 350оС). В котлах котельных и электростанций обычно сжигается мазут, в бытовых отопительных установках - печное бытовое (смесь средних фракций).

К природным газам относится газ, добываемый из чисто газовых месторождений, газ конденсатных месторождений, шахтный метан и др. Основной компонент природного газа - метан. В энергетике используется газ, концентрация СН4 в котором выше 30% (за пределами взрывоопасности).

Искусственные горючие газы - результат технологических процессов переработки нефти и других горючих ископаемых (нефтезаводские газы, коксовый и доменный газы, сжиженные газы, газы подземной газификации угля и др.).

Из композиционных топлив, как наиболее употребительное, можно назвать брикеты - механическая смесь угольной или торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

Синтетическое топливо (полукокс, кокс, угольные смолы) в Беларуси не используется.

Расщепляющееся топливо - вещество, способное выделять большое количество энергии за счет торможения продуктов деления тяжелых ядер (урана, плутония). В качестве ядерного топлива используется природный изотоп урана , доля которых во всех запасах урана менее 1%.

Природное топливо располагается в земной коре. Запасы угля в мире оцениваются в 14 триллионов тон (Азия - 63%, Америка - 27%). Основные запасы угля - Россия, США, Китай. Все количество угля можно представить в виде куба со стороны 21 км; из него ежегодно "выедается" человеком на свои разносторонние нужды "кубик" с ребром 1,8 км. Очевидно, при таком темпе потребления этого угля хватит на срок порядка 1000 лет. Поэтому, в общем разговоры о топливных и энергетических кризисах скорее имеют политическую, чем ресурсную подоплеку. Другое дело - уголь тяжелое, неудобное топливо, имеющее много минеральных примесей, что усложняет его использование, но главное - запасы его распределения крайне неравномерно.

Общеизвестны страны, обладающие самыми богатыми месторождениями нефти, при этом разведанные запасы нефти все время увеличиваются; прирост идет в основном за счет морских шельфов. Если некоторые страны берегут свои запасы в земле (США), другие (Россия) интенсивно их "выкачивают". Общие запасы нефти в мире ниже, чем угля, но более удобное для использования топливо, особенно в переработанном виде. После подъема через скважину нефть подается потребителям в основном нефтепроводами, железной дорогой, танкерами, расстояние может достигать нескольких тысяч километров. Поэтому в себестоимости нефти существенную долю имеет транспортная составляющая. Энергосбережение при добычи и транспортировке жидкого топлива заключается в уменьшении расхода электроэнергии на прокачку (удаление вязких парафинистых компонентов, нагрев нефти, применение экономичных насосов, увеличение диаметров нефтепроводов).

Природный газ располагается в залежах, представляющих собой купола из водонепроницаемого слоя (типа глины), под которым в пористой среде (передатчик) под давлением находится газ, состоящая в основном из СН4. На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подается на магистральный газопровод диаметром 0,5…1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компенсаторов, установленных через каждые 100…150 км. Компрессоры вращаются газовыми турбинами, потребляющими газ, общий расход газа составляет 10…12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен. Транспортные расходы намного ниже для сжигания газа, но и доля его потребления мала. Энергосбережение при добычи и транспорте газообразного топлива заключается в использование передовых технологий бурения, очистки, распределения, повышения экономичности газотурбинных установок для привода компрессоров магистралей.

Для всех видов топлива коэффициент извлечения из недр составляет 0,3…0,6, а для его увеличения требуется существенные затраты.


Нетрадиционные и возобновляемые

источники энергии
Возобновляемые - это ресурсы, энергия которых непрерывно восстанавливается природой: энергия рек, морей, океанов, солнца, ветра, земных недр и т.п.

Невозобновляемые - это ресурсы, накопленные в природе ранее, в далекие геологические эпохи, и в новых геологических условиях практически не восполняемые (органические топлива: уголь, нефть, газ). К невозобновляемым энергоресурсам относится также ядерное топливо.

Энергетика на ископаемом топливе (тепловые, конденсационные электрические станции, котельные) стала традиционной. Однако оценка запасов органического топлива на планете с учетом технических возможностей их добычи, темпов расходования в связи с ростом энергопотребления показывает ограниченность запасов. Особенно это касается нефти, газа, высококачественного угля, представляющих собой ценное химическое сырье, которое сжигать в качестве топлива нерационально и расточительно. Отрицательное влияние оказывает сжигание больших количеств топлива в традиционных энергетических установках на окружающую среду: загрязнение, изменение газового состава атмосферы, тепловое загрязнение водоемов, повышение радиоактивности в зонах ТЭС, общее изменение теплового баланса планеты.

Практически неисчерпаемы возможности ядерной и термоядерной энергетики, но с нею связаны проблемы теплового загрязнения планеты, хранения радиоактивных отходов, вероятных аварий энергетических гигантов.

В связи с этим во всем мире отмечается повышенный интерес к использованию нетрадиционных возобновляемых источников энергии. Их природа определяется процессами на Солнце, в глубинах Земли, гравитационным взаимодействием Солнца, Земли и Луны. Установки работающие на возобновляемых источниках, оказывают гораздо меньшее воздействие на окружающую среду, чем традиционные потоки энергии, естественно циркулирующие в окружающем пространстве. Экологическое воздействие энергоустановок на возобновляемых источниках в основном заключается в нарушении ими естественного ландшафта.

В настоящее время возобновляемые энергоресурсы используются незначительно. Их применение крайне заманчиво, многообещающе, но требует больших расходов на развитие соответствующей техники и технологий. При ориентации части энергетики на возобновляемые источники важно правильно оценить их долю, технически и экономически оправданную для применения. Эта задача - оценить, использовать потенциал возобновляемых ресурсов, найти их место в топливно-энергетическом комплексе - стоит перед экономикой Беларуси. Ее решение поможет смягчить дефицитность энергосистемы республики, позволит снизить зависимость от импорта энергоресурсов, будет способствовать стабильности экономики и политической независимости.

При планировании энергетики на возобновляемых источниках важно учесть их особенности по сравнению с традиционными невозобновляемыми. К ним относятся следующие.



  • 1.Периодичность действия в зависимости от неуправляемых человеком природных закономерностей и, как следствие, колебания мощности возобновляемых источников от крайне нерегулярных, как у ветра, до строго регулярных, как у приливов.

  • 2.Низкие, на несколько порядков ниже, чем у возобновляемых источников (паровые котлы, ядерные реакторы), плотности потоков энергии и рассеянность их в пространстве. Поэтому энергоустановки на возобновляемых источниках эффективны при небольшой единичной мощности и прежде всего для сельских районов.

  • 3.Применение возобновляемых ресурсов эффективно лишь при комплексном подходе к ним. Например, отходы животноводства и растениеводства на агропромышленных предприятиях одновременно могут служит сырьем для производства метана, жидкого и твердого топлива, а также удобрений.

  • 4.Экономическую целесообразность использования того или иного источника возобновляемой энергии следует определять в зависимости от природных условий, географических особенностей конкретного региона, с одной стороны, и в зависимости от потребностей в энергии для промышленного, сельскохозяйственного производства, бытовых нужд, с другой. Рекомендуется планировать энергетику на возобновляемых источниках для районов размером порядка 250 км.

При выборе источников энергии следует иметь в виду их качество. Последнее оценивается долей энергии источника, которая может быть превращена в механическую работу. Электроэнергия обладает высоким качеством. С помощью электродвигателя более 95% ее можно превратить в механическую работу. Качество тепловой энергии, получаемой в результате сжигания топлива на тепловых электростанциях, довольно низкое - около 30%.

Возобновляемые источники энергии по их качеству условно делят на три группы:

1.Источники механической энергии, обладающие довольно высоким качеством:


  • ветроустановки - порядка 30%,

  • гидроустановки - 60%,

  • волновые и приливные станции - 75%.

2.Источники тепловой энергии:

  • прямое или рассеянное солнечное излучение,

  • биотопливо, обладающее качеством не более 35%.

3.Источник энергии, использующие фотосинтез и фотоэлектрические явления, имеют различное качество на разных частотах излучения; в среднем КПД фотопреобразователей составляет порядка 15%.

Основными нетрадиционными и возобновляемыми источниками энергии для Беларуси являются гидро-, ветроэнергетические, солнечная энергия, биомасса, твердые бытовые отходы.


3.1.Солнечная энергетика.

Возможность использования солнечной энергии.


Известно два направления использования солнечной энергии. Наиболее реальным является преобразование солнечной энергии в тепловую и использование в нагревательных системах. Второе направление - системы непрямого и прямого преобразования в электрическую энергию.

Прямое преобразование солнечной энергии в тепловую.

Солнечные нагревательные системы могут выполнять ряд функций:



  • подогрев воздуха, воды для отопления и горячего водоснабжения зданий в районах с холодным климатом;

  • сушку пшеницы, риса, кофе, других сельскохозяйственных культур, лесоматериалов для предупреждения их поражения насекомыми и плесневыми грибками;

  • поставлять теплоту, необходимую для работы абсорбционных холодильников;

  • опреснение воды в солнечных дистилляторах;

  • приготовление пищи;

  • привод насосов.

Рис.3.1. Приемники солнечного излучения

а) - открытый резервуар на поверхности Земли. Тепло уходит в Землю;

б) - черный резервуар в контейнере со стеклянной крышкой с изолированным дном;

в) - заполненная водой металлическая плоская емкость. Стандартный промышленный приемник: нагревая жидкость протекает через него и накапливается в специальном резервуаре.

Вода


Земля

а)

Изоляция



Стекло

Вода


б)

в)

На рис.3.1 представлены три из большого числа конструкций нагревателя воды, отличающихся по эффективности и стоимости.



Для отопления зданий зимой могут применяться так называемые пассивные и активные солнечные системы. На рис.3.2а показан пассивный солнечный нагреватель: солнечные лучи попадают на заднюю стенку и пол здания, представляющие собой массивные конструкции с усиленной теплоизоляцией, окрашенные в черный цвет. Недостаток такой системы прямого нагрева - медленный подъем температуры в зимние дни и чрезмерная жара летом - устраняется с помощью накопительной стенки с солнечной стороны (рис.3.2б). Стенка работает как встроенный воздушный нагреватель с тепловой циркуляцией. Летом такую стену может затенять козырек крыши. Активные солнечные отопительные системы используют внешние нагреватели воздуха и воды. Их можно устанавливать на уже существующие здания.

В системах непрямого преобразования в электрическую - на гелиотермических электростанциях солнечная энергия, аналогично энергии органического топлива на ТЭС, превращается в тепловую энергию рабочего тела, например, пара, а затем в электрическую. Можно создать гелиотермические электростанции мощностью до нескольких десятков - сотен мегаватт. Концентрация солнечной энергии может осуществляться с помощью рассредоточенных коллекторов в форме параболоидов диаметром более 30м.



солнечный башня


Рис.3.2 Пассивные солнечные нагреватели:

а - прямой нагрев задней стенки здания: использованы массивные,

окрашенные в черный цвет поверхности с усиленной теплоизоляцией

для поглощения и накопления солнечной теплоты;

б - здание с накопительной стенкой.

Рис.3.3 Солнечные системы накопления тепловой энергии.

а) солнечная электростанция башенного типа:

1 - солнечный котел; 2 - гелиостат; 3 – паровая установка.

б) использование солнечного тепла на отопление:

1-солнечный коллектор; 2- нагревательный прибор; 3 – аккумулятор

А)

Теплый



воздух

Холодный


воздух

Б)

Каждый из них независимо следит за Солнцем и передает его энергию теплоносителю. Альтернативный вариант - солнечные электростанции башенного типа. На них системы плоских зеркал, расположенные на большой площади, отражают солнечные лучи на центральный теплоприемник на вершине башни (рис.3.3).



К сожалению, КПД преобразования солнечной энергии в электрическую на гелиотермических электростанциях составляет не более 10%, а стоимость получаемой электроэнергии несопоставима с ее стоимостью на ТЭС и даже АЭС. Серьезная проблема - непостоянство солнечного излучения в течении суток, его зависимость от времени года. Для обеспечения круглосуточного энергоснабжения требуется аккумулирование энергии. В этой связи рациональна совместная работа гелиотермической и гидроаккумулирующей электростанций.


Рис.3.4
Заманчиво и многообещающе прямое превращение солнечной энергии в электрическую с помощью солнечных элементов (рис.3.4), в которых используется явление фотоэффекта. В настоящее время наиболее совершенны кремниевые фотоэлементы. Их КПД составляет не более 15%, и они очень дороги. Предложено два варианта реализации принципа фото-электрического преобразования. Первый заключается в создании солнечных станций на искусственных спутниках Земли, оборудованных солнечными панелями из фотоэлементов площадью от 20 до 100 км2 в зависимости от мощности станции. Вырабатываемая на спутниках электроэнергия будет преобразовываться в электромагнитные волны в микроволновом диапазоне частот, направляться на Землю, где принимается приемной антенной. Второй предполагает монтаж сборных панелей солнечных фотоэлектрических элементов в малонаселенных и малоиспользуемых пустынных районах Земли. солнечная батарея

Для территории Беларуси свойственны относительно малая интенсивность солнечной радиации и существенное изменение ее в течение суток года. В этой связи необходимо отчуждение значительных участков земли для сбора солнечного излучения, весьма большие материальные и трудовые затраты. Поэтому для нашей республики реально использование солнечной энергии для сушки кормов, семян, фруктов, овощей, подъема и подогрева воды на технологические и бытовые нужды. В результате возможная экономия топливно-энергетических ресурсов оценивается всего в 5000 у.т./год.


3.2. Ветроэнергетика и малая гидроэнергетика.

Гидроэнергетика - это область наиболее развитой энергетики на возобновляемых ресурсах, использующая энергию падающей воды, волн и приливов.

Цель гидроэнергетических установок - преобразование потенциальной энергии воды в механическую энергию вращения гидротурбины.

Принципиальная схема производства электроэнергии на гидроэлектростанции представлена на рис.3.5. С помощью плотины в водохранилище создается запас потенциальной энергии воды. Через подводящий (напорный) водопровод вода под напором подается на турбину, с помощью которой кинетическая энергия падающей воды превращается в механическую энергию вращения турбины и далее вала электрогенератора. КПД превращения энергии воды в электрическую энергию в гидроэнергетических установках оказывается порядка 50%.

34

Рис.3.5. Схема гидроэлектростанции.

1-электрогенератор; 2 – приводной ремень; 3 – гидротурбина;

4 – сопло; 5 – вентиль; 6 – водовод; 7 – плотина; 8 – решетка.
Основные параметры, от которых зависит мощность ГЭС,- это расход воды, т.е. количество воды, подаваемой на турбину в единицу времени, и напор-перепад между водной поверхностью водохранилища и уровнем установки гидроагрегата. Поэтому мощность ГЭС, количество и стоимость вырабатываемой ею электроэнергии в конечном итоге зависят от типографических условий в районе размещения водохранилища и ГЭС.

Наиболее сложные проблемы гидроэнергетики - ущерб, наносимый окружающей среде водохранилищами (уничтожение уникальной флоры и фауны, затопление плодородных почв, климатические изменения, потенциальная угроза землетрясений и др.), заиливание гидротурбин, их коррозия, большие капитальные затраты на сооружение ГЭС. Вырабатываемую ГЭС энергию легко регулировать, и она преимущественно используется для покрытия пиковой части графика нагрузки энергосистем с целью улучшения работы базисных электростанций (ТЭС, КЭС, АЭС). Гидроресурсы Беларуси оцениваются в 1000 МВт. Однако практически реализуемый потенциал малых рек и водотоков Беларуси составляет едва ли 10% этой величины, что эквивалентно экономии 0,1 млн. тонн условного топлива. Для достижении большего пришлось бы затопить значительные площади из-за равнинного характера рек. К концу 60-х годов в Беларуси эксплуатировалось около 180 малых ГЭС (МГЭС) общей мощностью 21 МВт. В настоящее время осталось лишь 6 действующих МГЭС. Гидроаккумулирующие электростанции (ГАЭС) предполагается сооружать для использования избыточной мощности при снижении потребления электроэнергии в ночное время и нерабочие дни при вводе в Белорусской энергосистеме энергоисточников на ядерном топливе.

Принципиальная схема ГАЭС дана на рис.3.6.
35

Рис.3.6 Схема гидроаккумулирующей электростанции.

1 – линия электропередачи; 2 – трансформатор; 3 – двигатель-генератор;

4 – напорный водовод; 5 – верхний резервуар; 6 – насос-турбина;

7 – водовод; 8 – нижний резервуар.
При малых нагрузках в энергосистеме электроэнергия от базисных электростанций (ТЭС, АЭС) может использоваться в действии насосов, перекачивающих воду нижнего водохранилища в верхнее. В периоды пика вода пропускается обратно в нижнее водохранилище, проходя через гидроагрегат и вырабатывая дополнительную электроэнергию для пиковых нагрузок. Возможны надземный и подземный варианты сооружения ГАЭС.

Основные направления развития гидроэнергетики РБ является восстановление старых МГЭС путем капитального ремонта и частичной замены оборудования; сооружение новых МГЭС на водохранилищах неэнергетического (комплексного) назначения, на промышленных водосбросах; строительство бесплотинных ГЭС на реках со значительным расходом воды.



Ветроэнергетика. Энергия ветра на земном шаре оценивается в 175-219 тыс. ТВт/ч в год. Это примерно в 2,7 раза больше суммарного расхода энергии на планете. Постоянные воздушные течения к экватору со стороны северного и южного полушарий образуют систему пассатов. Существуют периодические движения воздуха с моря на сушу и обратно в течении суток - бризы и года - муссоны. Полезно может быть использовано лишь 5% указанной величины энергии ветра. Используется же значительно меньше.ветроустановка


Рис.3.7.

Энергию ветра человек начал применять в глубокой древности для приведения в движении парусных кораблей, мельничных колес. В наше время она используется для выработки электроэнергии. Это - наиболее эффективный способ утилизации энергии ветра. В ветроэнергетической установке (ВЭУ) кинетическая энергия движения воздуха превращается в энергию вращения ротора генератора (рис.3.7), который вырабатывает электроэнергию. Выходная мощность установки пропорциональна площади лопастей ветрового ротора и скорости ветра в кубе. Поэтому ветроэнергетические установок большой мощности оказываются крупногабаритными, ведь скорость ветра в среднем бывает небольшой.

Для защиты от разрушения сильными случайными порывами ветра установки проектируется со значительным запасом мощности. Трудности в использовании ветроустановок связаны с непостоянством скорости ветра. Приходится управлять частотой вращения ветроколеса и согласовывать ее с частотой вращения электрогенератора. Кроме того, в периоды безветрия электроэнергия не производится. Для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы энергии. Крупномасштабное применение ВЭУ в каком-то одном районе может вызвать значительные климатические изменения, испортить ландшафт, ВЭУ создают шум и электромагнитные помехи.

Научные разработки и исследования ориентированы на использование ВЭУ по двум направлениям: в региональных энергосистемах и для местного (автономного) энергоснабжения. Функционируют ВЭУ мощностью до 20 кВт, и созданы установки мощностью до 3-4 МВт. Срок службы таких генераторов порядка 20 лет. Стоимость вырабатываемой ими электроэнергии будет меньше, чем на ТЭС на жидком топливе. Устанавливаться такие ВЭУ могут на открытых равнинных местах. Ветроустановки мощностью от 10 до 100 кВт для автономного энергоснабжения жилых помещений, ферм и других потребителей могут применяться в странах с высоким жизненным уровнем.

Территория Республики Беларусь находится в умеренной ветровой зоне. Стабильная скорость ветра составляет 4-5 м/с и соответствует нижнему пределу устойчивой работы отечественных ВЭУ. Это позволяет использовать лишь 1.5-2.5% ветровой энергии. Поэтому ветроэнергетику можно рассматривать в качестве вспомогательного энергоресурса, решающего местные проблемы, например, отдельных фермерских хозяйств. Основными направлениями использования ВЭУ в нашей республике на ближайший период будет их применение для привода насосных установок и как источников энергии для электродвигателей. Готовиться к серийному выпуску ветроустановка ротационного типа (рис.3.7) мощностью 5-8 кВт, устойчиво работающая при скорости ветра 3.5 м/с. Разрабатывается и готовиться к испытаниям более мощная ВЭУ с горизонтальным ветроколесом. Автономные ВЭУ обязательно должны комплектоваться резервными источниками электроэнергии или аккумуляторными батареями.

3.3. Энергия биомассы.
Под действием солнечного излучения в растениях образуется органические вещества и аккумулируется химическая энергия. Этот процесс называется фотосинтезом. Животные существуют за счет прямого или косвенного получения энергии и вещества от растений. Этот процесс соответствует трофическому уровню фотосинтеза. В результате фотосинтеза происходит естественное преобразование солнечной энергии.

Вещества, из которых состоят растения и животные, называют биомассой. Посредством химических или биохимических процессов биомасса может быть превращена в определенные виды топлива: газообразный метан, жидкий метанол, твердый древесный уголь. Продукты сгорания биотоплива путем естественных экологических или сельскохозяйственных процессов вновь превращаются в биотопливо. Система круговорота биомассы показана на рис.3.8.


Аккумулирование

энергии в биомассе

СО2

Питательные соли,

гумус

Фотосинтез

Естественное

разложение

Бытовые и промышленные

топлива

Высвобождение

энергии

h

Рис.3.8. Система планетарного круговорота биомассы

Энергия биомассы может использоваться в промышленности, домашнем хозяйстве. Так, в странах, поставляющих сахар, за счет отходов его производства покрывается до 40% потребностей в топливе. Биотопливо в виде дров, навоза и ботвы растений применяется в домашнем хозяйстве примерно 50% населения планеты для приготовления пищи, обогрева жилищ.

Существуют различные энергетические способы переработки биомассы:


  • термохимические (прямое сжигание, газификация, пиролиз);

  • биохимические (спиртовая ферментация, анаэробная переработка, биофотолиз);

  • агрохимические (экстракция топлива).

Получаемые в результате переработки виды биотоплива и ее КПД приведены в таблице 3.1.
Источники биомассы и производимые биотоплива

Таблица 3.1



Источник биомассы или топлива

Производимое биотопливо

Технология

переработки



КПД

переработки, %



Лесоразработки

теплота

сжигание

70

Отходы переработки древесины

теплота

газ


нефть

уголь


сжигание
пиролиз

70
85

Зерновые

солома

сжигание

70

Сахарный тростник, сок

этанол

сбраживание

80

Сахарный тростник, отходы

жмых

сжигание

65

Навоз

метан

анаэробное разложение

50

Городские стоки

метан

анаэробное разложение

50

Мусор

теплота

сжигание

50

В последнее время появились проекты создания искусственных энергетических плантаций для выращивания биомассы и последующего преобразования биологической энергии. Для получения тепловой мощности, равной 100 Мвт, потребуется около 50 м2 площади энергетических плантаций.

Более широкий смысл имеет понятие энергетических ферм, которое подразумевает производство биотоплива как основного или побочного продукта сельскохозяйственного производства лесоводства, речного и морского хозяйства, промышленной и бытовой деятельности человека.

В климатических условиях Беларуси с 1га энергетических плантаций собирается масса растений в количестве до 10 т сухого вещества, что эквивалентно примерно 5т у.т. при дополнительных агроприемах продуктивность 1га может быть повышена в 2-3 раза. Наиболее целесообразно использовать для получения сырья выработанные торфяные месторождения площадь которых в республике составляет около 180 тыс. га. Это может стать стабильным, экологически чистым и биосферно-совместимым источником энергетического сырья.

Весьма многообещающе для Беларуси использование в качестве биомассы отходов животноводческих ферм и комплексов. Получение из них биогаза может составить на уровне 2000 г. около 890 млн. куб. м в год, что эквивалентно 160 тыс. т у.т.

Сдерживающим фактором развития биогазовых установок в республике являются продолжительные зимы, большая металлоемкость установок, неполная обеззараженность органических удобрений.

В жилых и общественных зданиях (школах, вузах, детсадах, магазинах, столовых и т.д.) образуются твердые бытовые отходы (ТБО). Содержание органического вещества в них составляет 40-75%, углеводов - 35-40%, зольность - 40-70%. Горючие компоненты в ТБО равны 50-88%. Их теплотворная способность - 800-2000 ккал/кг. Бытовые отходы содержат такие трудноразлагаемые химические элементы, в их числе хлорорганические и токсичные. В большей степени ТБО обогащены кадмием, оловом, свинцом и медью.

В мировой практике получение энергии из ТБО осуществляется сжиганием или газификацией. В Японии, Дании, Швейцарии сжигается около 70% твердых бытовых отходов, остальная часть складируется на полигонах или компостируется. В США сжигается около 14% ТБО, в Германии - 30%, Италии - 25%.

В Республике Беларусь ежегодно накапливается 2.4 млн.т ТБО с потенциальной энергией 470 тыс. т у.т. Учитывая бедность республики энергетическими ресурсами, необходимо вовлечь ТБО в ее энергопотенциал путем применения прогрессивных технологий, заимствованных из опыта других стран либо развернуть исследования и создать собственные технологии переработки ТБО.

Общие возможности экономии ТЭР за счет применения нетрадиционных и возобновляемых источников для условий РБ ограничены. Они оцениваются в 200-540 тыс. т у.т. в год, т.е. порядка 0.5-1% общих потребностей Беларуси в ТЭР. Основными потребителями возобновляемых энергоресурсов могут стать объекты сельского хозяйства. Возобновляемые источники энергии могут решать в основном локальные задачи энергообеспечения и служить необходимым дополнением к традиционной энергетике на органическом топливе и ядерной энергетике. Кирвель, И.И. Основы энергосбережения: курс лекций / И.И. Кирвель. – Минск: БГУИР, 2004. (стр. 8-15, 31-47)





Поделитесь с Вашими друзьями:
  1   2   3   4


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница