Шпаргалка Бетон. Классификация бетона



Скачать 440,81 Kb.
страница2/3
Дата17.10.2016
Размер440,81 Kb.
1   2   3

• Уточнение расчетного состава бетона на пробных замесах. Производят опытные замесы бетона при трех значениях водо-цементного отношения, из которых одно принимают расчетное, а два других больше или меньше на 10...20%. Количество цемен¬та, воды, песка и щебня (гравия) для бетона с водоцементным отношением, не равным расчетному, определяют по вышеизло¬женному методу. Из каждой приготовленной смеси готовят по три образца куба размером 20X20X20 см, которые выдержи¬вают в нормальных условиях и испытывают в возрасте 28 сут при определении класса бетона (или в другие сроки). По резуль¬татам испытаний строят график зависимости прочности бетона от цементно-водного отношения, с помощью которого выбирают Ц/В, обеспечивающее получение бетона заданной прочности.

При пробных замесах проверяют также подвижность или жесткость бетонной смеси (она должна удовлетворять проект¬ной), определяют ее плотность и по результатам испытания пробных замесов вносят соответствующие коррективы в рассчи¬танный состав бетона. При изменении содержания песка и щебня (гравия) учитывают их влажность.

Свойства бетона

• Прочность бетона. В конструкциях зданий и сооружений бе¬тон может находиться в различных условиях работы, испыты¬вая сжатие, растяжение, изгиб, скалывание. Прочность бетона при сжатии зависит от активности цемента, водоцементного отношения, качества заполнителей, степени уплотнения бетонной смеси и условий твердения. Основными факторами при этом ока¬зываются активность цемента и водоцементное отношение.

Для получения удобоукладываемой бетонной смеси отношение воды к цементу обычно принимают В/Ц = =0,4..,0,7, в то время как для химического взаимодействия це¬мента с водой требуется не более 20% воды от массы цемента. Избыточная вода, не вступившая в химическое взаимодействие с цементом, испаряется из бетона, образуя в нем поры, что ведет к снижению плотности и соответственно прочности бетона. Исходя из этого, прочность бетона можно повысить путем умень¬шения водоцементного отношения и усиленного уплотнения.

Наряду с активностью и качеством цемента, водоцементным отношением и качеством заполнителей на прочность бетона в значительной степени влияют степень уплотнения бетонной смеси, продолжительность и условия твердения бетона.

Прочность заполнителей не оказывает значительного влияния на прочность бетона до тех пор, пока она больше проектируемой марки бетона. Применение низкопрочных заполнителей с проч¬ностью ниже требуемой марки бетона может существенно сни¬зить прочность последнего или потребует высокого расхода цемента.

Шероховатость поверхности заполнителей также оказывает влияние на прочность бетона. В отличие от гравия зерна щебня имеют развитую шероховатую поверхность, чем обеспечивается лучшее сцепление с цементным камнем, а бетон, приготовленный на щебне при прочих равных условиях, имеет большую проч-яость, чем бетон на гравии.

На скорость твердения бетона влияют минералогический сос¬тав цемента (см. гл. 5) и начальное количество воды в бетонной смеси. Последнее определяет подвижность (или жесткость) ее. Жесткие бетонные смеси (с низким содержанием воды) обеспе¬чивают более быстрое твердение бетона, чем подвижные.

Прочность бетона со временем изменяется примерно по лога¬рифмическому закону; исходя из этого при расчетах прочности бетона для разных сроков пользуются формулой

где Rn — прочность бетона в возрасте суток, Па; бетона в возрасте 28 сут, Па.

Эта формула применима для ориентировочных расчетов прочности бетона на портландцементах средних марок в возрасте более 3 сут.

Качество бетона по прочности характеризуется его классом (маркой), который определяется величиной предела прочности при сжатии образцов-кубов с ребром 150 мм, изготовленных из рабочей бетонной смеси после твердения их в течение 28 сут в нормальных условиях (МПа). Тяжелые бетоны подразделяют-на классы (марки) В7,5(100); В12,5(150); В15(200); В25(300); В30(400); В40(500); В45(600). Превышение класса (марки) бетона от заданной проектной прочности свыше 15% не допус¬кается, так как это влечет перерасход цемента. При испытании образцов в виде кубов размером 150X150X150 мм применяют щебень наибольшей крупности зерен 40 мм.

При переходе от класса бетона В к средней прочности бетона (Па), контролируемой на производстве для образцов с ребром 150 мм (при нормативном коэффициенте вариации 13,5%), можно применять формулу Rip = В/0,778. Для класса В10 средняя сочность бетона будет R = 12,9 МПа, для класса В50 R =64,3 МПа.

Высокая плотность бетона достигается рациональным подбо¬ром зернового состава заполнителей (с минимальной пустотностью), применением бетонных смесей с низким водоцементным отношением, интенсивным уплотнением, введением в бетонную смесь добавок (см. § 6.2). Даже выполнение указанных меро¬приятий не дает возможности получить абсолютно плотный бетон. Поры в бетоне образуются в результате испарения воды, не вступившей в химическую реакцию с цементом при его тверде¬нии, а также вследствие неполного удаления воздушных пузырь¬ков при уплотнении бетонной смеси. Поэтому бетон является материалом газопроницаемым.

• Водопроницаемость бетона характеризуется небольшим давлением воды, при котором она еще не просачивается через образец. Плотный бетон при мелкопористой структуре и доста¬точной толщине конструкции оказывается практически водоне¬проницаемым. По водонепроницаемости бетон делят на шесть марок: В2, В4, В6, В8, В10 и В12, выдерживающих соответствен¬но давление 0,2; 0,4; 0,6; 0,8; 1,0 и 1,2 МПа. В более тонких конструкциях добиваются высокой водонепроницаемости бетона использованием гидрофобного цемента, а также применением водоизоляционных покрытий, наносимых на поверхность пневма¬тическим способом (торкретированием).

Морозостойкость бетона характеризуется наибольшим чис¬лом циклов попеременного замораживания и оттаивания, кото¬рые способны выдерживать образцы 28-суточного возраста без снижения предела прочности при сжатии более чем на 25% и без потери в массе более 5%. Морозостойкость является одним из главных требований, предъявляемых к бетону гидротехниче¬ских сооружений, дорожных покрытий, опор мостов и других подобных конструкций.

• Бетон под нагрузкой ведет себя иначе, чем сталь и другие упругие материалы. Область упругой работы бетона идет от на¬чала нагружения до напряжения сжатия, при котором по грани¬це сцепления цементного камня с заполнителем образуются микротрещины, при дальнейшем нагружении микротрещины образуются уже в цементном камне и возникают пластические неупругие деформации бетона.

Ползучесть — явление увеличения деформаций бетона во времени при действии постоянной нагрузки. Полная относитель¬ная деформация бетона при длительном действии нагрузки сла¬гается из его начальной упругой и пластической деформации ползучести. Ползучесть проявляется при всех видах деформации. При растяжении бетона она в 1,5 раза выше, чем при сжатии.

Ползучесть бетона объясняют пластическими свойствами влаж¬ного цементного геля, а также возникновением и развитием микротрещин. Ползучесть зависит от вида цемента и заполните¬лей, состава бетона, его возраста, водоцементного отношения, влажности и условий твердения. Меньшая ползучесть у бетонов на высокомарочных цементах и плотных заполнителях. Легкие бетоны на пористых заполнителях имеют большую ползучесть, чем тяжелые.

В процессе твердения происходят объемные изменения бетона. Твердение бетона на воздухе, за исключением бетонов на безуса¬дочном и расширяющемся цементах, сопровождается уменьше¬нием объема, т. е. усадкой. При твердении бетона в воде вначале объем его несколько увеличивается и в воздушно-сухих условиях бетон дает усадку. Значительную усадку имеют бетоны из жид¬ких смесей (с большим расходом цемента, а также водо-цементным отношением). Наибольшая усадка в бетоне происхо¬дит в начальный период твердения — за первые сутки она сос¬тавляет до 60...70% от месячной усадки. Объясняется это тем, что в указанный период особенно интенсивно обезвоживается тесто вследствие испарения и поглощения влаги гидратирующи-мися зернами цемента. В результате обезвоживания частицы сближаются между собой и цементный камень дает усадку.

Объемные изменения в бетоне в первый период твердения вызываются расширением от нагревания (иногда до 50 °С внутри массивных конструкций) в результате экзотермических реакций цемента с водой. Объемные изменения бетона могут вызвать значительные деформации конструкций и даже появление тре¬щин. Для предотвращения их в массивных бетонных конструк¬циях устраивают специальные температурные швы. Чтобы умень¬шить экзотермию бетона, применяют цементы с малым выделе¬нием тепла. Величина усадки бетона на портландцементе зависит от минералогического состава и тонкости помола цемента. Усад¬ка бетона возрастает с увеличением тонкости помола цемента.

• Отношение к действию высоких температур. Бетон — огне¬стойкий материал, выдерживающий высокие температуры во время пожара. Огнестойкость бетона позволяет применять его для устройства дымовых труб промышленных печей, их фунда¬ментов.

Приготовление и укладка бетонной смеси

• Приготовление бетонной смеси включает две основные техно¬логические операции: дозировку исходных материалов и их пере¬мешивание.

Важнейшим условием приготовления бетонной смеси с задан¬ными показателями свойств, а также обеспечения постоянства этих показатателей от замеса к замесу является точность дози¬ровки составляющих материалов в соответствии с рабочим сос¬тавом бетона. Дозирование материалов производят дозаторами (мерниками) периодического или непрырывного действия.

Перемешивание бетонной смеси производят в бетоносмеси¬телях периодического и непрерывного действия. В бетоносмесите¬лях периодического действия рабочие циклы машины протекают с перерывами, т. е. в них периодически загружаются отвешенные порции материалов, которые перемешиваются, а далее бетонная смесь выгружается (рис. 6.9). В бетоносмесителях непрерывного действия все три операции производят

По способу перемешивания материалов бетоносмесители бывают с принудительным и гравитационным перемешиванием (при свободном падении).

Для приготовления жестких и особо жестких бетонных смесей созданы так называемые вибросмесители, в которых перемеши¬вание составляющих материалов осуществляется в сочетании с вибрацией, а в некоторых конструкциях — только вибрацией. При соответствующем режиме вибрации, когда силы трения и сцепления между частицами смеси нарушены, а силам тяжести противодействует значительно превосходящее их давление воз¬буждения в смеси, последняя переходит во взвешенное состояние с высокой подвижностью, что способствует интенсивному пере¬мешиванию смеси.

Транспортирование бетонной смеси к месту укладки должно обеспечить сохранение ее однородности и степени подвижности. При длительной перевозке бетонная смесь загустевает вследствие гидратации цемента, поглощения воды заполнителями и испаре¬ния, однако подвижность смеси к моменту укладки ее должна быть не меньше проектной.

На заводах бетонные смеси транспорти¬руют бетонораздатчиками, самоходными тележками, ленточными транспортерами; в цехах малой и средней мощности — электро¬тельферами и электрокарами. Подвижные смеси можно транс¬портировать на большие расстояния по трубам с помощью пневматических установок. На строительные площадки, где ведутся бетонные работы, бетонную смесь доставляют в авто-бетоносмесителях, в которых бетонную смесь перемешивают при¬мерно за 5 мин до прибытия на место.

Завод на каждую партию бетонной смеси выдает паспорт с указанием состава бетона и его класса.

• Укладка бетонной смеси и ее уплотнение являются одними из наиболее трудоемких и энергоемких операций. Эти операции в настоящее время выполняются с помощью бетоноукладчиков или более простых машин — бетонораздатчиков. Бетоноукладчи¬ки позволяют в большей степени механизировать процесс рас¬пределения бетонной смеси в форме. Бетонная смесь должна быть уложена в форме так, чтобы в ней не оставались свободные места; особенно тщательно нужно заполнять углы и суженные места формы. После укладки бетонной смеси производят уплот¬нение ее вибрированием, виброштампованием, центрифугирова¬нием, вакуумированием, прокатом (см. гл. 11).

Наиболее распространенным видом уплотнения бетонной сме¬си является вибрирование. Степень уплотнения бетонной смеси с помощью вибраторов зависит в основном от частоты и ампли¬туды колебаний, а также продолжительности вибрирования.

По роду двигателя различают вибраторы электромеханиче¬ские, электромагнитные и пневматические; наиболее распростра¬нены электромеханические вибраторы. В зависимости от вида, формы и размеров бетонируемой конструкции применяют вибра¬торы различных типов.

На практике часто ис¬пользуют комбинированные способы уплотнения бетон¬ной смеси.

При центробежном спо¬собе формования для уплотнения бетонной смеси используют центробежную силу, возникающую при вращении формы. Часто¬та вращения 400...900 об/мин, при этом бетонная смесь равно¬мерно распределяется по стенкам формы и хорошо уплотняется; часть воды затворения (20...30%) отжимается к внутренней по¬верхности изделия, это способствует повышению плотности и водонепроницаемости. Такой способ формования применяют при изготовлении труб, полых колонн, опор и т. п.

Повысить качество бетона можно вакуумированием смеси, при этом из бетонной смеси извлекается часть избыточной воды и воздуха, одновременно % под действием атмосферного давления бетонная смесь уплотняется, ускоряется твердение и повышается прочность бетона. Еще лучшие результаты дает по¬вторное вибрирование после вакуумирования, при котором закрываются мелкие поры, образовавшиеся при вакуумировании.

Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Бетон при нормальных Условиях постепенно набирает свою прочность и к 28 сут приоб¬ретает марочную прочность, причем в первые 3...7 сут прочностьбетона растет более интенсивно и на 7-е сутки составляет 60. 70% марочной (проектной) прочности. Для заводской техноло¬гии такие условия твердения бетона неприемлемы.

В заводской технологии применяют ускоренные методы твер¬дения — тепловую обработку при обязательном сохранении влажности изделий. На заводах сборного железобетона чаще всего применяют прогрев изделий при атмосферном давлении в паровоздушной среде с температурой 80...85 °С или выдержи¬вание в среде насыщенного пара при 100 °С. Стремятся приме¬нять насыщенный пар, чтобы исключить высыхание бетона и создать хорошие условия для гидратации цемента.

На заводах сборного железобетона применяют также и дру¬гие способы тепловой обработки изделий: электропрогрев, кон¬тактный обогрев, обогрев в газовоздушной среде и др.

• Твердение бетона и контроль кач-ва

Структура бетона образуется в результате затвердевания бетонной смеси и его превращения в камень.

Уплотненная бетонная смесь в начальный период гидратации цемента сохраняет способность к пластическим деформациям. Со временем количество новообразований цементного камня увеличивается, система уплотняется и твердеет, образуется проч¬ный камень определенной структуры. Время формирования структуры я свойств бетона зависит от состава и применяемых матери¬алов- На формирование структуры оказывают влияние вид це¬мента, химические добавки, В/Ц, температура бетонной смеси, влажность среды и др.

Введение в бетон пластифицирующих добавок, например СДБ, замедляет схватывание цемента в начальный период; повышение температуры ускоряет процесс схватывания и твердения.

Структура затвердевшего тяжелого бетона представляет со¬бой цементный камень с размещенными в нем зернами заполни¬теля, с множеством пор и пустот разных размеров и проис¬хождения.

Макроструктура бетона может быть представлена системой щебень — цементно-песчаный раствор.

Макроструктура представляет строение системы песок — цементный камень, микроструктура — тонкое строение цемент¬ного камня. Микроструктура цементного камня в бетоне со¬стоит из новообразований, непрореагировавших зерен це¬мента и микропор. С увеличением возраста бетона микрострукту¬ра меняется в результате гидратации цемента и роста ново¬образований, пористость уменьшается, меняются распределение пор и их размеры, бетон становится плотнее и прочнее. Проч¬ность бетона растет неравномерно, в первые 7 сут после затворе-ния она нарастает быстро, а в дальнейшем замедляется. Скорость нарастания прочности бетона зависит от вида цемента.

В первые дни твердения прочность бетона на быстротвердеющих цементах выше, чем, например, на белитовых цементах.

Для твердения бетона необходима теплая и влажная среда. При повышенной температуре и влажной среде (в горячей воде с температурой 80 °С, во влажном паре с температурой до 100 °С или в автоклаве при температуре 175 °С и среде насыщенного водяного пара высокого давления) твердение протекает значи¬тельно быстрее, чем в нормальных условиях.

Твердение бетона при температуре ниже 15 °С замедляется, а при температуре ниже 0°С практически прекращается. Изло¬женное выше имеет важное значение при изготовлении сборных железобетонных изделий на заводах, а также при бетонировании в зимнее время.

Кроме прогрева бетона паром или электрическим током для ускорения применяют химические добавки, например хлористыйкальций и др.

Все вышеизложенное оказывает влияние на твердение бетона, формирование его структуры и, следовательно, свойств бетона.

• Правильно организованный контроль качества бетонных ра¬бот на всех стадиях технологического процесса изготовления бетонных конструкций — одно из важнейших условий получения прочного и долговечного бетона и снижения стоимости конструк¬ций. На предприятиях сборного железобетона применяют три вида контроля: входной, пооперационный и выходной. Контроль состоит в испытании и выборе исходных материалов для бетона, в их дозировании и перемешивании, укладке, уплотнении и уходе за ним, а также в определении качества затвердевшего бетона испытанием пробных образцов.

Прочность и качество бетона в конструкции можно ориенти¬ровочно определить и без разрушения — с помощью акустиче¬ских приборов. Сущность их действия основана на скорости распространения ультразвукового импульса или волны удара в материале и зависит от его плотности и прочности. Прочность бетона в конструкции без разрушения можно также определить и механическим способом, например прибором, действие которого основано на характеристике прочности, определяющейся глуби¬ной лунки в бетоне, образованной шариком при его вдавливании, или величины отскока маятника от бетона.

Методы Кошкарова (молотком в стенку), склерометром (прибор со шкалой, по удару определятся Rсж.бет), метод локального разрушения(по динамометру), метод ударного импульса.

Специальные типы бетонов

• Высокопрочный бетон прочностью 60...100 МПа получают на основе цемента высоких марок, промытого песка и щебня проч¬ностью не ниже 100 МПа. Высокопрочный бетон приготовляют с низким В/Ц = 0,3...0,35 (смеси жесткие или малоподвижные) в бетоносмесителях принудительного действия. Для укладки смесей и формования изделий используют интенсивное уплотне¬ние: вибрирование с пригрузом, двойное вибрирование и др Значительный эффект в производстве высокопрочных бетонов дают суперпластификаторы.

Высокопрочные бетоны бывают, как правило, и быстротвердеющими, однако для достижения отпускной прочности изделий в короткие сроки применяют тепловую обработку по сокращен¬ному режиму. Новые особо быстротвердеющие цементы позво¬ляют получать изделия из бетона без тепловой обработки. Тяжелый бетон имеет высокую прочность на растяжение, износ и морозостойкость.

Для приготовления высокопрочного бетона используют все средства, как-то: принимают предельно низкое водоцементное отношение, суперпластификаторы, высокопрочный цемент, тща¬тельное перемешивание и уплотнение бетонной смеси и строгий уход за бетоном.

• Мелкозернистый бетон отличается большим содержанием це¬ментного камня, поэтому его усадка и ползучесть несколько выше. Применяют его при изготовлении тонкостенных, в том чис¬ле армоцементных конструкций, а также в тех случаях, когда отсутствует крупный заполнитель. Свойства мелкозернистого бетона характеризуются такими же факторами, как и обычного бетона. Однако отсутствие крупного заполнителя влечет за собой увеличение водопотребности бетонной смеси, а для получения равнопрочного бетона и равноподвижной смеси возрастает рас¬ход цемента на 20...40% Для сокращения расхода цемента необ¬ходимо применять высококачественные пески, пластифицирую¬щие добавки, суперпластификаторы, производить хорошее уплот¬нение смеси. Мелкозернистый бетон обладает повышенной проч¬ностью на изгиб, хорошей водонепроницаемостью и морозостой¬костью.

Кислотоупорный бетон получают на кислотоупорном цементе и кислотоупорных заполнителях. Затворяют бетонную смесь растворимым стеклом в количестве, обеспечивающем необходи¬мую подвижность бетонной смеси. Для изготовления кислото¬упорного бетона, обладающего стойкостью при действии неорга¬нических кислот (кроме плавиковой), применяют смесь раствори¬мого стекла (силиката натрия) с 15% кремнефтористого нат¬рия Na2SiFe6, а также песок кварцевый, щебень из бештаунита, андезита или кварцита и пылевидную фракцию (мельче 0,15 мм), приготовляемую из кислотостойких материалов.

Твердение кислотоупорного бетона должно проходить в теп¬лой воздушно-сухой среде.

Кислотоупорный бетон характеризуется прочным сцеплением со стальной арматурой, стойкостью по отношению к действию серной, соляной, азотной кислот и др. (за исключением плавико¬вой), пределом прочности при сжатии через 3 сут— 11...12 МПа, через 28 сут— 15 МПа. При действии воды и слабых кислот кислотоупорный бетон постепенно разрушается; действию концентрированных кислот этот бетон сопротивляется хорошо, но пастворы щелочей легко разрушают его. Кислотоупорный бетон Используют для различных конструкций и облицовки аппара¬туры в химической промышленности, заменяя им дорогие мате¬риалы: листовой свинец, кислотоупорную керамику, тесаный камень.

Жаростойкий бетон способен сохранять в заданных пределах свои физико-механические свойства при длительном воздействии высоких температур. В зависимости от применяемого вяжущего жаростойкие бетоны бывают следующих видов: бетоны на порт¬ландцементе, шлакопортландцемента, на глиноземистом цементе и жидком стекле. Для повышения стойкости бетона при нагре¬вании в его состав вводят тонкомолотые добавки из хромитовой руды, шамотного боя, магнезитового кирпича, андезита, грану¬лированного доменного шлака и др. Тонкость помола добавки для бетона на портландцементе должна быть такой, чтобы через сито № 009 проходило не менее 70%, а для бетона на жидком стекле — не менее 50%. В качестве мелкого и крупного заполни¬теля применяют хромит, шамот, бой глиняного кирпича, базальт, диабаз, андезит и др. При правильно выбранных вяжущих и заполнителях бетон может длительное время выдерживать, не разрушаясь, действие температуры до 1200°С.

Выбор материалов производят в зависимости от условий и температуры его эксплуатации.

Жаростойкие бетоны на портландцементе и глиноземистом цементе производят класса (марки) не менее В20 (250), а на жидком стекле — В 12,5 (150). Бетоны на жидком стекле не при¬меняют в условиях частого воздействия воды, а на портланд¬цементе — в условиях кислой агрессивной среды.

Бетоны на портландцементе разных составов используются при одностороннем нагреве с предельной температурой 1700°С, на глиноземистом цементе и на жидком стекле — до 1400°С.

• Декоративные бетоны получают при введении в бетонную смесь щелоче- и светостойких пигментов в количестве 8...10 % от массы цемента (охра, мумия, сурик и др.) или применении цвет-ных цементов. В отдельных случаях используют заполнители, обладающие необходимым цветом, например туфы, красные кварциты, мрамор и другие окрашенные горные породы. Цветные бетоны используют для декоративных целей в строительстве зданий и сооружений, при устройстве пешеходных переходов, разделительных полос на дорожных покрытиях, парковых доро¬жек, а также изготовлении элементов городского благоустрой¬ства.

• Бетон для дорожных и аэродромных покрытий. Условия рабо¬ты дорожного бетона неблагоприятны. Он многократно подвер¬гается увлажнению и высыханию, замораживанию и оттаива¬нию, а также воздействию транспортных средств. Основными расчетными напряжениями являются напряжения от изгиба. В связи с этим к дорожному бетону предъявляют повышенные требования к прочности на растяжение при изгибе, морозостой¬кости, износостойкости и воздухостойкости. Долговечность до¬рожного бетона достигается не только выбором качественных материалов, но и правильной технологией производства работ. Для дорожного бетона применяют портландцемент высоких ма¬рок с органическим содержанием СзА, высокопрочные качествен¬ные заполнители — щебень из гранита, известняка, кварцевый песок и др. Для увеличения подвижности бетонной смеси при¬меняют пластифицирующие и воздухововлекающие добавки, иногда и ускорители твердения.



Поделитесь с Вашими друзьями:
1   2   3


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница