Симметрия в жизни человека



Скачать 269,9 Kb.
страница1/3
Дата06.08.2017
Размер269,9 Kb.
  1   2   3
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 55

СОВЕТСКОГО РАЙОНА ГОРОД ВОРОНЕЖ

Научно-исследовательская работа

на тему:

«Симметрия в жизни человека»

Выполнил ученик

8 «Б» класса:

Митин Алексей

Руководитель:

учитель математики

Беляева М.В.

Воронеж, 2015г.



Оглавление:

  1. Актуальность темы.

  2. Симметрия и её виды.

  3. Симметрия в искусстве.

    1. Архитектура;

    2. Живопись;

    3. Литература и музыка.

  4. Симметрия и техника.

  5. Симметрия в разных науках.

    1. Биология;

    2. Физика;

    3. Химия.

  6. Выводы.

  7. Используемая литература.


Актуальность темы.

В основе красоты многих форм лежит симметрия или её виды. Эта тема очень обширна и затрагивает помимо математики многие другие области наук, искусства, техники. Именно симметрия преобладает в природе над асимметрией. Представить или вспомнить какое-нибудь асимметричное животное сможет не каждый, ведь их не много и в основном это различные бактерии или простейшие организмы, а так же животные, которые получили свойство асимметрии из-за необходимости. Познание природы и жизни – первая задача человека. И одной из главных ступеней к этой цели является познание симметрии.



Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство.

Герман Вейль

Цели исследования:

  • изучить понятия симметрии и её видов (центральная, осевая, поворотная, зеркальная и др.),

  • провести исследования по изучению явлений симметрии в биологии, физике, архитектуре, живописи, литературе, транспорте и технике;

  • приобретение навыков самостоятельной работы с большими объемами информации.


Симметрия и её виды.

Понятие симметрии начало складываться очень давно. Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Сейчас она широко используется во многих направлениях современной науки.

Симметрия – это соразмерность, пропорциональность в расположении частей чего-нибудь по обе стороны от центра.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.



Различают три основных вида симметрии: зеркальная, осевая и центральная. Так же есть скользящая, винтовая, точечная, поступательная, фрактальная и другие виды симметрии.

Осевая симметрия: две точки называются симметричными относительно прямой, если эта прямая проходит через середину отрезка, соединяющего эти точки и перпендикулярна к нему. Каждая точка этой прямой считается симметричной самой себе. Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка относительно прямой также принадлежит этой фигуре. Также говорят, что фигура обладает осевой симметрией. Классическими фигурами с такой симметрией будут круг, прямоугольник, ромб, квадрат, причём они будут иметь по несколько осей симметрии. Под осевой симметрией так же в естественных науках принимают вращательную или радиальную симметрию - форма симметрии, при которой фигура совпадает сама с собой при вращении объекта вокруг определённой прямой. Центром симметрии объекта называют прямую, на которой пересекаются все оси двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.



Центральная симметрия: две точки A и A1 называются симметричными относительно точки O, если O – середина отрезка AA1. Фигура называется симметричной относительно точки O, если для каждой точки фигуры симметричная ей точка относительно точки O также принадлежит этой фигуре. Точка O называется центром симметрии фигуры. Это означает, что фигура обладает центральной симметрией.

Примерами фигур, обладающих этой симметрией, будут окружность и параллелограмм. Центр симметрии окружности является центр этой окружности, а центром параллелограмма – точка пересечения его диагоналей. Самый простой пример, который я могу привести - растения, почти в любых растениях можно найти часть, обладающую центральной или осевой симметрией, но при этом сам цветок будет обладать центральной симметрии только в случае чётного количества лепестков.



Зеркальной симметрией называют такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей относительно этой плоскости α точку M1. Когда мы смотрим в зеркало, мы наблюдаем в нём своё отражение – это пример «зеркальной» симметрии. Зеркальное отражение - это пример так называемого «ортогонального» преобразования, изменяющего ориентацию. Я думаю, отражение в реке также будет хорошим примером зеркальной симметрии. Эту симметрию так же называют в других науках билатеральной и двусторонней. Она особенно заметна в архитектуре, а так же в животном мире. Человек так же обладает ей и если мысленно провести линию по центру, то правая часть будет соответствовать левой.


Поделитесь с Вашими друзьями:
  1   2   3


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница