Тема z-преобразование сигналов и системных функций



страница1/13
Дата12.09.2017
Размер1,55 Mb.
ТипРеферат
  1   2   3   4   5   6   7   8   9   ...   13



ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signals processing. Z - transformation of signals.

Тема 8. Z-ПРЕОБРАЗОВАНИЕ СИГНАЛОВ И СИСТЕМНЫХ ФУНКЦИЙ

Чего не понимают, тем не владеют.

Иоганн Вольфганг Гете. 1770-1831 г.

Великим было хорошо. Записал мудрую мысль и пошел кофе пить. А тут иногда понимаешь как попугай нотную грамоту, владеешь как рыба ружьем, а делать приходится. И что интересно – неплохо получается. Было бы желание.

Виль Ибрагимов. Уральский геофизик, 1937-2006 г.

Содержание

Введение.

1. Z – трансформация сигналов. Определение z-преобразования. Связь с преобразованиями Фурье и Лапласа. Отображение z-преобразования.

2. Пространство z-полиномов. Область сходимости. Примеры z-преобразования. Аналитическая форма z-образов.

3. Свойства z-преобразования. Линейность. Задержка. Преобразование свертки. Разложение сигналов на блоки последовательной свертки. Дифференцирование.

4. Обратное z-преобразование. Методы преобразования. Преобразование интегрированием по контуру. Преобразование разложением на дроби. Метод степенных рядов.

5. Применение z – преобразования. Описание дискретных систем. Геометрическая оценка АЧХ и ФЧХ системы. Вычисление частотной характеристики с помощью БПФ. Анализ устойчивости систем. Связь разностных уравнений и передаточных функций.



Введение

Цифровая обработка сигналов оперирует с дискретными преобразованиями сигналов и обрабатывающих данные сигналы систем. Математика дискретных преобразований зародилась в недрах аналоговой математики еще в 18 веке в рамках теории рядов и их применения для интерполяции и аппроксимации функций, однако ускоренное развитие она получила в 20 веке после появления первых вычислительных машин. В принципе, в своих основных положениях математический аппарат дискретных преобразований подобен преобразованиям аналоговых сигналов и систем. Однако дискретность данных требует учета этого фактора, и его игнорирование может приводить к существенным ошибкам. Кроме того, ряд методов дискретной математики не имеет аналогов в аналитической математике.

Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Оно играет для дискретных сигналов и систем такую же роль, как для аналоговых – преобразование Лапласа. Большое значение z-преобразование имеет для расчетов рекурсивных цифровых систем обработки сигналов, а потому рассматривается отдельной темой перед началом изучения рекурсивных цифровых фильтров.

8.1. Z – ТРАНСФОРМАЦИЯ сигналов [4, 12, 22].

Определение z-преобразования. Z- преобразование является обобщением дискретного преобразования Фурье. Особенно эффективно оно используется при анализе дискретных систем и, в частности, при проектировании рекурсивных цифровых фильтров.

Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-k. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от - до +. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.



Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kt), равно как и непосредственно дискретной функции, можно поставить в однозначное соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:

sk = s(kt)  TZ[s(kt)] =sk zk = S(z). (8.1.1)

где z = +j = rexp(-j) - произвольная комплексная переменная. В показательной форме z = rexp(-j), где r = |z| = ,  = arg(z) =argtg(/).

Пример 1: sk = {1, 2, 0, -1, -2, -1, 0, 0}.

S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.



В каузальных системах значения импульсного отклика систем существуют при k ≥ 0 и уравнение (8.1.1) действует в одностороннем варианте:

H(z) =hk zk.

В общем случае, z-преобразование – это степенной ряд с бесконечным количеством членов, поэтому он может сходиться не для всего пространства значений z. Область z, в которой z-преобразование сходится и значения S(z) конечны, называют областью сходимости.





Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   13


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал