Тема z-преобразование сигналов и системных функций



страница10/13
Дата12.09.2017
Размер1,55 Mb.
ТипРеферат
1   ...   5   6   7   8   9   10   11   12   13

Пример. Повторим пример преобразования данным способом z-образа функции

X(z) = z2 / (z-0.5)(z-1)2, использованного в предыдущем примере. Функция имеет простой полюс p1 = 0.5 и полюс второго порядка p2 = 1.

X(z) = Cz/(z-0.5) + D1z/(z-1) + D2z/(z-1)2.

С = z/(z-1)2 = 0.5/(0.5-1)2 = 2.



D1 = [(z-1)2 X(z)/z] = [z / (z-0.5)] |z=1= -2.

D2 = (z-1)2 X(z)/z = z/(z-0.5) |z=1= 2.

X(z) = 2z/(z-0.5) + D1z/(z-1) + D2z/(z-1)2.

Обратное преобразование каждой простой дроби выполним по таблице 8.2.1.



Результат: x(k) = 2(0.5)k -2 +2k = 2[(k-1) + (0.5)k]. Результат аналогичен методу вычетов.

Если z-изображение имеет вид дробно-рациональной функции, то разложение на простые дроби с последующим применением таблицы соответствий обычно труда не представляет. Так, например:

S(z) = (b0 + b1 z-1 + b2 z-2) / (1 - a z-1) = b0/(1 - a z-1) + b1 z-1/(1 - a z-1) + b2 z-2/(1 - a z-1).

По таблице соответствия:

X(z) = 1/(1-az-1) → x(k) = ak.

Отсюда, с учетом линейности преобразования и свойства задержки:

x(k) = b0 ak + b1 ak-1 + b2 ak-2.

При преобразовании функций со знаменателями более высоких порядков предварительно следует найти полюса функции. Например, для многочлена второго порядка с полюсами p1 и p2:

S(z) = 1/(1-a1 z-1+a2 z-2) = 1/[(1-p1 z-1)(1-p2 z-1).

Представим S(z) в виде суммы дробей с неизвестными коэффициентами b1 и b2:

S(z) = b1/(1-p1 z-1)+b2/(1-p2 z-1) = (b1- b1 p2 z-1+b2-b2 p1 z-1)/[(1-p1 z-1)(1-p2 z-1).

При равенстве знаменателей в этих двух выражениях должны быть равны и числители:

(b1 + b2) – (b1 p2+b2 p1)z-1 = 1,

а это обеспечивается равенством коэффициентов при одинаковых степенях z. Отсюда получаем систему уравнений:

b1 + b2 = 1.

b1 p2+b2 p1 = 0.

Решая эту систему уравнений, находим значения коэффициентов b1 и b2, подставляем коэффициенты в S(z), выраженное в виде суммы дробей, и по таблице соответствия переводим дроби во временные функции.

Метод степенных рядов. Выражение (8.4.1) можно разложить непосредственно в степенной ряд (8.4.1') путем деления в столбик, для чего числитель и знаменатель функции выражаются предварительно через нарастающий или уменьшающийся показатель степени z. Обратное z-преобразование степенного ряда очевидно.

Пример нарастающей степени z. X(z) = (1+2z+z2) / (1-z+0.4z2).

1 + 2z + z2 | 1 – z + 0.4z2



1 – z + 0.4z2 1 + 3z + 3.6z2 + 2.4z3 + 0.96z4 + … Ряд может быть бесконечным.

3z + 0.6z2



3z – 3z2 + 1.2z3

3.6z2 1.2z3



3.6z2 – 3.6z3 + 1.44z4

2.4z3 1.44z4



2.4z3 – 2.4z4 + 0.96z5

0.96z4 – 0.96z5

0.96z4 – 0.96z5 + 0.384z6, и т.д.

Обратное преобразование выполняется путем идентификации коэффициентов степеней при zk с k-отсчетами функции: x(k) = {1, 3, 3.6, 2.4, 0.96, …}.



Пример уменьшающихся номеров степени z. X(z) = (1+2z+z2) / (1-z+0.4z2) → (деление на zN числителя и знаменателя полинома) → (z-2+2z-1+1) / (z-2-z-1+0.4).

z-2 + 2z-1 + 1 | z-2z-1 + 0.4



z-2z-1 + 0.4 1 + 3z + 3.6z2 + 2.4z3 + 0.96z4 + … Результат тот же.

3z-1 + 0.6



3z-1 – 3 + 1.2z

3.6 1.2z



3.6 – 3.6z + 1.44z2

2.4z 1.44z2



2.4z – 2.4z2 + 0.96z3

0.96z2 – 0.96z3

0.96z2 – 0.96z3 + 0.384z4, и т.д.

Метод деления полинома (8.4.1) можно выполнять рекурсивно:

x(0) = b0 / a0,

x(1) = (b1 – x(0) a1) / a0,



x(2) = (b2 – x(1) a1 – x(0) a2) / a0,



x(n) = (bn (x(n-i) ai) /a0, n = 1, 2, 3, …



Поделитесь с Вашими друзьями:
1   ...   5   6   7   8   9   10   11   12   13


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал