Тема z-преобразование сигналов и системных функций


Вычисление частотной характеристики с помощью БПФ



страница12/13
Дата12.09.2017
Размер1,55 Mb.
ТипРеферат
1   ...   5   6   7   8   9   10   11   12   13
Вычисление частотной характеристики с помощью БПФ. Так как частотная характеристика дискретной системы – это Фурье образ ее импульсной характеристики, то для систем, описанных в общей форме (8.4.1), сначала производится разложение H(z) в степенной ряд (8.4.1'), над коэффициентами которого и выполняется БПФ. Гладкость (разрешение по частоте f = 1/(Nt)) будет определяться количеством коэффициентов степенного ряда и при необходимости может увеличиваться дополнением ряда нулями.

Альтернативный способ – вычисление БПФ непосредственно коэффициентов bn числителя и am знаменателя выражения (8.4.1) с последующим алгебраическим делением B(k)/A(k) результатов БПФ. Количество коэффициентов bn и an в (8.4.1) обычно невелико и для получения достаточно гладких частотных характеристик их продлевают нулями до необходимого значения N = 1/(tf).



Анализ устойчивости систем выполняется для рекурсивных систем с бесконечной импульсной характеристикой (БИХ-систем). Такие системы описываются либо непосредственно в виде разностного уравнения, либо передаточной функцией в виде z-образа импульсной характеристики или разностного уравнения. Общее условие устойчивости импульсной характеристики системы:

|h(k)| < ∞.

Для рекурсивных систем начальный индекс суммирования равен нулю. Практически это означает, что любой ограниченный входной сигнал в устойчивой системе порождает ограниченный выходной сигнал.

В устойчивой системе все полюсы передаточной функции H(z) должны находиться за границами единичной окружности z=exp(-jt) (внутри окружности при символике z-1). Система с полюсом на единичной окружности также считается неустойчивой (потенциально неустойчивой), даже если во входном сигнале нет гармоники с частотой, соответствующей положению данного полюса на окружности. Это определяется тем, что в соответствии с (8.5.1) коэффициент усиления системы в точке полюса равен бесконечности и любой бесконечно малый сигнал на этой частоте даст бесконечно большой сигнал на выходе. Естественно, что для практических систем понятия бесконечности не существует и можно пытаться принять определенные меры для исключения таких критических частот. Так, например, в интегрирующих системах полюс находится на нулевой частоте и из входного сигнала можно исключить постоянную составляющую, но при этом изменяется и характер интегрирования (только динамические составляющие входного сигнала). Следует также учитывать, что во входных сигналах обычно всегда присутствует определенный статистический шум, наблюдаются скачки, присутствует шум квантования и т.п. эффекты с непрерывным частотным спектром, которые могут приводить к огромным ошибкам при обработке данных в потенциально неустойчивых системах. Практически осуществимый способ повышения устойчивости систем – компенсировать полюсы на окружности нулями в этих же точках, но это может приводить к существенному изменению частотной характеристики системы.

Оценку устойчивости рекурсивной системы можно проводить и по виду ее импульсной характеристики (вычислением обратного z-преобразования или подачей импульса Кронекера на вход (алгоритм) системы). Если значения коэффициентов увеличиваются по мере роста номеров – система неустойчива. Если они очень медленно уменьшаются (медленно стремятся к нулю) – система устойчива минимально, имеет большое время установления рабочего режима, при определенных условиях может давать большие погрешности в обрабатываемых данных.



Связь разностных уравнений и передаточных функций рекурсивных систем. Стандартная запись разностного уравнения системы (связи входного воздействия x(k) и выходного сигнала y(k) при известных постоянных параметрах нерекурсивной bn и рекурсивной am трансформации сигналов):

y(k) = bn x(k-n) -am y(k-m). (8.5.4)

От разностного уравнения с использованием свойства задержки z-преобразования




Поделитесь с Вашими друзьями:
1   ...   5   6   7   8   9   10   11   12   13


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал