Тема z-преобразование сигналов и системных функций



страница2/13
Дата12.09.2017
Размер1,55 Mb.
ТипРеферат
1   2   3   4   5   6   7   8   9   ...   13

Пример 2: Последовательность (сигнал) конечной длины, непричинная: s-k = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.

S(z) = 1z0+2z-1+3z-2+2z-3+1z-4 = 1+2/z+3/z2+2/z3+1/z4.

Очевидно, что S(z) = ∞ при z = 0. Область сходимости – все значения z, за исключением z = 0.

Пример 3: Последовательность конечной длины, причинная (как импульсный отклик каузальной системы): sk = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.

S(z) = 1z0+2z-1+3z-2+2z-3+1z-4 = 1+2z+3z2+2z3+z4.

S(z) = ∞ при z = ∞. Область сходимости – все значения z, за исключением z = ∞.

Пример 4: Последовательность конечной длины, двусторонняя (как импульсный отклик симметричного фильтра): sk = {1, 2, 3, 2, 1}, k = -2, -1, 0, 1, 2.

S(z) = 1z-2+2z-1+3z0+2z1+1z2 = 1/z2+2/z+3+2z+z2.

S(z) = ∞ при z = 0 и z = ∞. Область сходимости не включает точки z = 0 и z = ∞.

Пример 5: Последовательность бесконечной длины, причинная (как импульсный отклик рекурсивного интегрирующего фильтра): sk = 0 при k < 0, s = 1 при k ≥ 0.

S(z) = z-0+z1+z2+z3+ … = 1+z+z2+z3+ … = 1/(1-z)

Ясно, что ряд может удовлетворять условию сходимости только при |z| < 1.

Значения z, для которых S(z) = ∞, называются полюсами, а для которых S(z) = 0, называются нулями функции S(z). Как видно из примеров, для последовательностей конечной длины z-преобразование сходится везде кроме точки z=∞ для имеющих правостороннюю часть (k≥0), и точки z=0 для имеющих левостороннюю часть (k<0), в любых их комбинациях. Для бесконечных причинных последовательностей преобразование сходится везде внутри круга единичного радиуса с центром в начале координат.

По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.

Пример 6: S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.

sk = {1, 0, 3, 8, 0, 0, -4, -2}.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала (сдвиг вправо по временной оси) на n интервалов: znS(z)  s(k-n). Чтобы убедиться в этом, достаточно в приведенном выше примере выполнить умножение многочлена S(z), например на z2, выполнить обратное преобразование и получить новый сигнал sk = {0, 0, 1, 0, 3, 8, 0, 0, -4, -2}.

Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед". Последнее применяется, например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим" – с положительными.



Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk в виде суммы весовых импульсов Кронекера:

sk = s(kt) =s(nt) (kt-nt).

Определим спектр сигнала по теореме запаздывания:



S() =s(kt) exp(-jkt).

Выполним замену переменных, z = exp(-jt), и получим:



S() =s(kt)zk = S(z).

Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jt).

Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:

S() = S(z), z = exp(-jt); S(p) = S(z), z = exp(-pt). (8.1.2)

Обратное преобразование:

S(z) = S(),  = ln z / jt; S(z) = S(p), p = ln z/t. (8.1.3)

При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jt) и z-1 = exp(p).

При zk = exp(-jkt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kt), так и на функцию частотного спектра сигнала (по значениям аргумента ).



Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.1.1). В частности, спектральной оси частот  на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jt)| = = 1.


Рис. 8.1.1. Комплексная z-плоскость



Подстановка значения какой-либо частоты  в z = exp(-jt) отображается точкой на окружности. Частоте = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста N = /t (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки N совпадают, а при дальнейшем повышении или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.

Отсюда следует также, что область сходимости устойчивых каузальных систем на z-плоскости представляет собой круг единичного радиуса.

Сигналы и системы непрерывного времени очень часто описываются с помощью преобразования Лапласа. Если z=exp(-st), где s= + j, то

z = exp(-( + j)t) = exp(-t) exp(-jt).



Следовательно, |z| = exp(-t), arg(z) = t = 2ft = 2f/f, где f - частота дискретизации, при этом ось  отображается на z-плоскости единичной окружностью, правая сторона s-плоскости отображается внутрь окружности, а левая сторона – на внешнюю сторону окружности. При использовании символики z-1 отображение сторон s-плоскости на z-плоскости меняется местами.



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   13


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал