Урок №27. Жизненный путь рядовой звезды. Бесшабашная юность начальная стадия эволюции звезд гравитационное сжатие



страница1/5
Дата06.12.2017
Размер1,65 Mb.
  1   2   3   4   5
УРОК №27. ЖИЗНЕННЫЙ ПУТЬ РЯДОВОЙ ЗВЕЗДЫ.

1. Бесшабашная юность - начальная стадия эволюции звезд.

- гравитационное сжатие;

- протозвезды;

- области звездообразования;

- протозвезды на диаграмме Г-Р;

2. Стабильная зрелость - стадия главной последовательности.

- механизм саморегуляции звезд;

-модели звезд различных классов;

3. Неспокойная старость – уход с главной последовательности.

- красные гиганты и белые карлики;

- бесславный конец.

1. Начальная стадия эволюции звезд

Согласно современным представлениям, звезды рождаются из газопылевой диффузной среды в результате процесса гравитационного сжатия отдельных газовых облаков под действием собственного тяготения. Температура вещества при переходе от молекулярных облаков к звездам возрастает в миллионы раз, а плотность – в 1020 раз.



Гравитационное сжатие начинается в наиболее плотных областях межзвездного газа. Сжатие возникает как следствие гравитационной неустойчивости, идея которой была высказана еще Ньютоном. Позже Джинс показал, что бесконечная однородная среда неустойчива, и из простого физического критерия определил минимальные размеры облаков, в которых может начаться самопроизвольное сжатие. Этот критерий - отрицательная полная энергия облака. Е0гравтепл<0. При этом максимальный размер устойчивого облака Lj и его масса Mj зависит от плотности частиц n и их температуры T:, . Массы таких облаков должны быть не меньше 1000 масс Солнца. Однако звезд с такими массами нет. Это связано с тем, что как только начинается сжатие в какой-то области облака, там увеличивается плотность, а температура поначалу почти не меняется. Такое изотермическое сжатие приводит к уменьшению критерия устойчивости Lj, а это, значит, что неустойчивость возникнет уже в более мелких масштабах. Внутри сжимающегося облака образуются новые центры сжатия – явление каскадной фрагментации облака.

Пока облако достаточно разрежено оно легко пропускает через себя гравитационную энергию, высвобождающуюся при сжатии, в виде инфракрасных квантов, испускаемых атомами. Гравитационное сжатие прекращается тогда, когда плотность облака возрастает настолько, что вещество становится непрозрачным к собственному излучению, которое начинает накапливаться в облаке и нагревать газ. Так в глубинах сжимающегося облака возникает устойчивое дозвездное тело – протозвезда.



Протозвезда. Рассмотрев в общих чертах начало процесса формирования протозвезд, мы имеем два важных результата, доступных проверке наблюдениями. Во-первых, становится ясно, почему звезды преимущественно возникают группами, в виде звездных скоплений. Число звезд в скоплениях, так же в согласии с наблюдениями должно быть порядка 1000 штук, если считать что в среднем звезды образуются с массами, близкими к солнечной. Во-вторых, можно понять, почему массы звезд заключены в сравнительно узких пределах, связанных с критерием Джинса.

Когда разогрев центрального сгущения окажется достаточным, чтобы возникшее газовое давление противостояло гравитации, сжатие этого сгущения прекращается, и основным процессом становится аккреция, т.е. падение вещества из облака на сформировавшееся ядро. Именно этот процесс максимально влияет на разброс масс звезд. В результате аккреции масса звезды постепенно увеличивается, а значит, растет температура и светимость звезды. На этом этапе протозвезда оказывается изолированной от внешней среды плотной и непрозрачной для видимого излучения оболочной. Такие объекты получили названия «звезд-коконов». Они перерабатывают горячее излучение протозвезды в мощное инфракрасное излучение. При дальнейшем росте массы растет и давление излучения протозвезды, которое рано или поздно остановит аккрецию вещества, а затем и начнет отталкивать остатки облака, не дав возможности им упасть на ядро. Из равенства силы гравитации силе светового давления Fизл=Fграв можно определить максимально возможную светимость L, которая для звезды с массой 100М равна 3106L, что соответствует наблюдаемым максимальным светимостям стационарных звезд главной последовательности на диаграмме Герцшпрунга-Рессела.



Очищенная от остатков оболочки звезда в это время переходит в гидростатическое равновесие за счет того, что при достаточно большой массе в ее недрах включается новый собственный источник энергии – термоядерные реакции. В это время звезда окончательно переходит на главную последовательность, на которой и остается большую часть своей жизни.

Области звездообразования. Гигантские молекулярные облака с массами, большими 105 массы Солнца (их известно более 6 000 в Галактике), содержат 90 % всего молекулярного газа Галактики. Именно с ними связаны области звездообразования. Рассмотрим две из них.

Туманность Орел - облако межзвездного газа, нагретого свечением нескольких горячих звезд типа O или B, в котором мы вживую можем наблюдать процессы рождения звезд. Расположена она в 6000 световых лет от нас в  созвездии  Змеи.  Скопление звезд на фоне Орла сформировалось в этой  газовой  туманности, оно и является причиной, вызывающей ее свечение. В наше время образование звезд продолжается вблизи "туловища  слона". Маленькие, темные области, возможно, являются протозвездами. Их еще называют звездными яйцами. Звезды внутри туманности имеют возраст лишь около 5,5 миллионов лет. В центре туманности выделяются так называемые газовые  Столбы. Это области звездообразования, состоящие почти из одного молекулярного водорода. Выделяющиеся  оконечности  столбов (слоновьи хоботы) несколько больше нашей Солнечной Системы. Часто в вершинах этих конусов располагаются глобулы – небольшие плотные темные газопылевые туманности, в которых уже начался процесс гравитационного сжатия. В некоторых глобулах наблюдаются объекты Хербига-Аро звездообразные сгущения обнаруженные в 1954 году, хотя на фотографиях за несколько лет до этого они отсутствовали. Это – первое, из непосредственно наблюдавшихся на наших глазах, следствие процесса звездообразования.


Поделитесь с Вашими друзьями:
  1   2   3   4   5


База данных защищена авторским правом ©grazit.ru 2017
обратиться к администрации

    Главная страница