1. Средства измерения, их характеристика, разновидности, области применени


Электронные вольтметры переменного тока, структурные схемы, разновидности



страница10/19
Дата17.10.2016
Размер1.13 Mb.
1   ...   6   7   8   9   10   11   12   13   ...   19

21. Электронные вольтметры переменного тока, структурные схемы, разновидности.


Самыми распространенными электронными приборами являются вольтметры, большинство из которых рассчитано не только на измерение переменных и постоянных напряжений, но также переменных и постоянных токов и активных сопротивлений.

Тракт измерения переменных напряжений в электронных вольтметрах построен, как правило, по одной из схем, приведенных на рис.25. Первая схема (рис.25,а) предназначена для измерения малых напряжений. Недостаток ее - более узкий диапазон измеряемых частот.



В основе построения измерительного устройства цифровых электронных вольтметров лежит тот или иной метод преобразования аналоговой величины в цифровую форму. Большинство современных цифровых измерителей используют преобразования либо по методу поразрядного уравновешивания, либо по методу последовательного счета. Примеры функциональных схем, реализующих эти методы, приведены на рис.26 и 27.

На вход измерительного устройства подается постоянное напряжение Ux. Напряжение Ux представляет собой либо измеряемое постоянное напряжение, либо выходное напряжение детектора (при измерении переменного напряжения).

При измерении напряжения по методу поразрядного уравновешивания (рис.26) на первом такте измеряемое значение Ux сравнивается с максимальным напряжением UK старшего разряда генератора компенсирующего напряжения (ГКН). Если UK > Ux> то схема сравнения вырабатывает сигнал, выключающий этот разряд из дальнейшего рассмотрения. Если UKX, то он остается включенным. На втором такте Ux сравнивается с величиной UK/2 и происходят те же операции. На третьем такте происходит сравнение Ux и UK/4 и т.д. Результат измерения считывается по числу оставшихся включенными разрядов.

Функционирует схема рис.27 следующим образом; в начале измерения запускается устройство управления, которое поочередно вырабатывает параллельные коды, соответствующие величинам UK, UK /2; UK/4 и т.д. Под воздействием этих кодов ГКН формирует компенсирующие напряжения UK, UK/2 и т.д. до тех пор, пока очередное напряжение не окажется менее измеряемого Ux и на уравновешивающую цепь не поступит соответствующее напряжение. В этом случае разряд, подаваемый на ГКН, не снимается, а указанная процедура повторяется для следующего младшего разряда.

При измерении напряжения по методу последовательного счета (рис.27) в момент начала измерения запускается (вручную или автоматически) пусковое устройство, вырабатывающее импульс, определяющий момент начала работы генератора линейно изменяющегося напряжения UK, поступающего на компаратор. Одновременно этот же импульс открывает схему совпадения и на вход электронного отсчетного устройства начинают поступать от кварцевого

генератора счетные импульсы. В момент равенства измеряемого напряжения Ux и UK компаратор вырабатывает сигнал, запирающий схему совпадения. Таким образом, электронное отсчетное устройство фиксирует число импульсов, прошедших за время, пока открыта схема совпадения. Это время пропорционально измеряемой величине напряжения UK.

Выходное сопротивление электронных вольтметров составляет десятки кОм. Ими можно измерять сопротивления от единиц мкВ до нескольких кВ. Основные источники погрешностей здесь: нестабильность элементов и собственные шумы электронных схем. Класс точности таких приборов – до 1,5. И магнитоэлектрическим и электронным вольтметрам присуща температурная погрешность, а также механические погрешности измерительного механизма и погрешности шкалы.


22. Особенности измерения напряжений переменных сигналов различной формы электронными аналоговыми вольтметрами.



23. Компенсаторы постоянного тока.


Компенсаторы постоянного тока.

Уравновешение измеряемого ЭДС постоянного тока известным напряжением.

Компенсатор:

н – ЭДС эталонного источника- нормальный элемент.

Евсп – вспомогательная ЭДС.

Rвсп – вспомогательный реостат.

П – переключатель.

Г – гальвонометр (индикатор равновесия)

Ен – значение ЭДС его достаточно точно из-

вестно:

Енtн20-0.0004(t-20)-0.000001(t-20)2

Ен20=1.01850

1 этап – установка рабочего тока. П положение 1, изменяя Rвсп, добиваемся 0-го отклонения гальванометра: Ен=Iprн.

2 этап: П положение 2; изменяя положение движка реостата r (т. е. rx) добиваемся 0-го отклонения Г, при этом Ex=Iprx, т. е. Ex=EHrx/rH

Именно этот прибор может измерять ЭДС. В чём отличие? (компенсатор - ЭДС, вольтметр - напряжение) В компенсаторе нет тока при измерении ЭДС, а в вольтметре есть внутреннее сопротивление  возникает ток.




24. Измерительные мосты. Обобщенная структурная схема, условия равновесия на постоянном и переменном токе.


Измерительный мост — устройство для измерения электрического сопротивления. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста.

300px-wheatstone_bridge

На схеме слева, Rx представляет собой неизвестное сопротивление; R1, R2 и R3 — известные сопротивления, причём значение R2 может регулироваться. Если отношение сопротивлений одного плеча (R2 / R1) равно отношению сопротивлений другого (Rx / R3), то разность потенциалов между двумя средними точками будет равна нулю, и ток между ними не будет протекать. Сопротивление R2 регулируется до получения равновесия, а направление протекания тока показывает, в какую сторону нужно регулировать R2.

С помощью гальванометра момент равновесия можно установить с большой точностью, и если сопротивления R1, R2 и R3 имеют маленькую погрешность, то Rx может быть измерено очень точно, ведь даже небольшие изменения Rx вызывают заметное нарушение баланса всего моста.

Таким образом, если мост сбалансирован (ток через гальванометр, сопротивление которого можно обозначить как Rg, равен нулю), эквивалентное сопротивление цепи будет:



R1 + R2 в параллели с R3 + Rx, то есть

r_e = {{(r_1 + r_2) \cdot (r_3 + r_x)}\over{r_1 + r_2 + r_3 + r_x}}

С другой стороны, если R1, R2 и R3 известны, но R2 не регулируется, то значение напряжения или тока через гальванометр также можно использовать для расчёта Rx, используя законы Кирхгофа. Такой метод применяется в тензометрических измерителях для расчёта величины механических деформаций, а также в электронных термометрах.

Найдём значения тока между точками B и C, используя первый закон Кирхгофа:

i_3\ - i_x\ - i_g\ =\ 0

i_1\ + i_g\ - i_2\ =\ 0

Теперь рассчитаем потенциал в цепях ABC и BCD, используя второй закон Кирхгофа:



i_3 \cdot r_3 + i_g \cdot r_g - i_1 \cdot r_1 = 0

i_x \cdot r_x - i_2 \cdot r_2 - i_g \cdot r_g = 0

Мост сбалансирован, если Ig = 0, поэтому перепишем второй набор выражений:



i_3 \cdot r_3 = i_1 \cdot r_1

i_x \cdot r_x = i_2 \cdot r_2

Перепишем выражения ещё раз:



r_x = {{r_2 \cdot i_2 \cdot i_3 \cdot r_3}\over{r_1 \cdot i_1 \cdot i_x}}

Из первого закона мы знаем, что I3 = Ix и I1 = I2. Таким образом мы можем найти Rx как:



r_x = {{r_2 \cdot r_3}\over{r_1}}

Если известны значения всех четырёх сопротивлений, а также напряжение (Vs), то напряжение на плечах моста можно найти, используя формулы делителя напряжения, а затем вычесть их друг из друга, чтобы найти V:



v = {{r_x}\over{r_3 + r_x}}v_s - {{r_1}\over{r_1 + r_2}}v_s

Если упростить выражение:



v = \left({{r_x}\over{r_3 + r_x}} - {{r_1}\over{r_1 + r_2}}\right)v_s

Измерительный мост показывает пример так называемых дифференциальных измерений, которые могут обладать очень высокой точностью. Варианты измерительного моста могут использоваться также для измерения электрической ёмкости, индуктивности, импеданса и даже количества взрывчатых газов в пробе при помощи эксплозиметра.



Каталог: ld
ld -> Информация относительно прав пожилых людей
ld -> «Великая Отечественная война» Воспитательная. Воспитание патриотизма, нравственное воспитание на примерах героев войны
ld -> В русском бардовском творчестве
ld -> 4. предприятия и заводы оборонной промышленности
ld -> Информация о Сибае (Республика Башкортостан)
ld -> Внутренний предиктор СССР
ld -> [26/01/2009] Атомная энергетика для подводного флота
ld -> Отчет о деятельности Федерального государственного учреждения науки
ld -> Научная подготовка, степень и звание: Доцент по специальности 07. 00. 07 – «Этнография, этнология и антропология»
ld -> Cет Муратовна сатира и юмор в устном народном творчестве адыгов


Поделитесь с Вашими друзьями:
1   ...   6   7   8   9   10   11   12   13   ...   19


База данных защищена авторским правом ©grazit.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал